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Depinning with dynamic stress overshoots: A hybrid of critical and pseudohysteretic behavior
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A model of an elastic manifold driven through a random medium by an applied forceF is introduced and
studied. The focus is on the effects of inertia and elastic waves, in particularstress overshootsin which motion
of one segment of the manifold causes a temporary stress on its neighboring segments in addition to the static
stress. Such stress overshoots decrease the critical force for depinning and make the depinning transition
hysteretic with static and pinned configurations coexisting with the steadily moving phase for a range ofF. We
find that the steady-state velocity of the moving phase is, nevertheless, history independent and the critical
behavior as the force is decreased is in the same universality class as in the absence of stress overshoots—the
dissipative limit in which hysteresis cannot occur and theoretical analysis has been possible. To reach this
conclusion, finite-size scaling analyses have been performed and a variety of quantities studied, including
velocities, roughnesses, distributions of critical forces, and universal amplitude ratios. If the force is increased
slowly from zero, the behavior is complicated with a spectrum of avalanche sizes occurring that seems to be
quite different from the dissipative limit. Related behavior is seen as the force is increased back up again to
restart the motion of samples that have been stopped from the moving phase. The restarting process itself
involves both fractal-like and bubblelike nucleation. Hysteresis loops in small- and intermediate-size samples
can be understood in terms of a depletion layer caused by the stress overshoots. Surprisingly, in the limit of
very large samples the hysteresis loops vanish. Although complicated crossovers complicate the analysis, we
argue that the underlying universality class governing this pseudohysteresis and avalanches is again that of the
apparently very different dissipative limit. But there are history dependent amplitudes—associated with the
depletion layer—that cause striking differences over wide ranges of length scales. Consequences of this picture
for the statistics and dynamics of earthquakes on geological faults are briefly discussed.
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I. INTRODUCTION

Extended elastic manifolds pulled through aquenched
random medium by an applied forceF exhibit, in the absence
of thermal fluctuations, a sharp transition from a pinn
phase to a moving phase asF is increased through a critica
valueFc @1#. Examples include interfaces between two flui
in porous media@2# or between oppositely magnetized ferr
magnetic domains, vortex lines and lattices in type II sup
conductors@3,4#, charge density waves@5#, and planar crack
fronts in solids@6#.

Although thedepinningtransitions of interest are drive
nonequilibrium transitions, it is instructive to draw an an
ogy with equilibrium phase transitions with the average
locity v̄ playing the role of an order parameter,F a tuning
parameter, and the quenched variations of the random po
tial loosely analogous—at least as giving rise to
ensemble—to thermal fluctuations. The character of de
ning transitions can, one might expect, be either discont
ous transitions with hysteresis—loosely like first-ord
transitions—,or critical—analogous to second-order
transitions depending on the system and, perhaps, on itshis-
tory. Such history dependence is an effect that cannot oc
in true equilibrium. Theoretical analysis has shown tha
broad class of realistic models undergo acritical depinning
transition with a unique, history independent critical force
the limit of a large system and

v̄;~F2Fc!
b ~1!
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for F just aboveFc . Several different universality classe
have been studied, including both short- and long-range
teractions, and random forces with or without periodicity
the former arising for manifolds with a periodic structure
the direction in which they move@5,7–10#.

But most of the theoretical analysis has focused on di
pative dynamics for which both inertia and any wave
other nonlocal stress propagation effects are ignored.
purpose of this paper is to study some of the consequence
these and other effects which we shall generically refer
for reasons to be explained shortly, asstress overshootef-
fects.

In order to understand the potential of these effects
significantly change the nature of depinning, it is necess
to consider the nature of the irregular local motion that u
derlies the critical depinning phenomena. The elasticity
the manifold mediates between two competing types
forces: the applied driving force and the random local p
ning forces. For smallF, the pinning dominates and the sy
tem relaxes to one of many static locally stable configu
tions. But as the force is slowly increased, there will be lo
instabilities when the driving force exceeds the random p
ning in some small region. A segment of the manifold w
then move forward rapidly and there will be some transi
motion, limited in spatial extent, until a new static config
ration is reached. For largeF, in contrast, the applied force
will dominate and the system will approach a nonequilibriu
statistically steady state with a nonzero mean velocity. N
ertheless, especially if the force is not too large, the mot
©2003 The American Physical Society03-1
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on short length and time scales will be very irregular w
instantaneous local velocities that far exceed the ma

scopic average velocityv̄.
In the absence of inertia or wave propagation, each s

ment of the manifold will move in response to the total for
applied to it: from the applied drive, from the random pi
ning, and from the other segments via elasticity. As long
the applied force is nondecreasing in time, the motion~at
least after initial transients have decayed away! will be only
in the ‘‘forward’’ direction in which the system is driven
This, combined with the convexity properties of elastici
means that the static configuration the system will settle
after it is disturbed by an increase—global or local—in t
applied force does not depend on the details of its dynam
The motion can thus be considered as quasistatic,in spite of
the rapid local motion that occurs. The basic argument, gi
by Middleton @11#, is as follows. Consider two initial con
figurations in the same random environment with one l
ging in the other in the sense that for allx, h(1)(x,t50)
,h(2)(x,t50). The convexity of the elasticity and the hi
tory independence of the dynamics then imply that the an
gous inequality will apply at all positive times. From this
immediately follows that there must be a unique critic
force, Fc : if there were a value ofF at which there existed
both a moving and a pinned solution, the moving one wo
pass the pinned one even if it were initially lagging behin
contradicting the no-passing inequality@12#

Now consider what can happen in the presence of ei
inertia or elastic waves that carry stress from one region
another in response to motion of one segment. The lo
dynamics would then appear to be crucial. If the local mot
is rapid enough that the relaxation to a new static configu
tion is underdamped, a moving segment can overshoot
or more potential static configurations before settling, if
all, in another. Even if the inertia is small enough that su
local prolonged jumps do not occur, as long as the motio
sometimes underdamped, a segment can temporarily o
shoot a static configuration before relaxing back into it. T
will produce a temporary overshoot of the stress—above
eventual static value—that this motion induces on neighb
ing segments. Any arbitrary small overshoot in the stress
the potential to dislodge another segment if there is
nearby that was sufficiently close to being destabilized in
absence of the overshoot. Again, the effects of this will be
cause the system to skip through a potentially static confi
ration without stopping. Elastic waves, just like their elect
dynamic cousins, carry with them pulses in stress that
larger than the eventual static stress that will obtain lo
after the waves have passed by. These stress overshoots
those from the inertia of local motion, have the potential
cause overjumping.

Very generally, overjumping of any kind means th
which configuration a pinned manifold stops in depends
details of its local dynamics and on its history, in a way th
cannot occur in the absence of inertial effects. One part
larly interesting consequence of this is the coexistence in
identical samples at the same value of the driving force o
static locally stable configuration, and a moving configu
tion that will ‘‘overtake’’ the static configuration. What th
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macroscopicconsequences of this are is the primary subj
of this paper. As stress overshoots can occur more rea
than local overjumps caused by inertia, we will genera
refer to both types of effects as stress overshoots, altho
with slight inconsistency that we trust will not be confusin
we will characterize their strength by a parameter that
denoteM.

What is the nature of the depinning transition asM is
increased from zero? There are various scenarios one
readily envisage. For large enoughM, in the model we intro-
duce in the following section, an infinitesimal increase inF
from anypinned state will result in a nonzero average velo
ity at long times. This is because sufficiently large stre
overshoots always induce other segments to move when
gered by an initial segment that moves in response to
increase inF. The increased triggering will spawn furthe
motion, despite the fact that the stress overshoot is only t
porary. This process will run away; and the manifold w
acquire a nonzero average velocity. While it might thus se
likely that the transition will become ‘‘first-order’’ for large
enoughM, does it do so for arbitrary smallM? If there are
regimes in which the depinning is indeed discontinuous
some way, is there macroscopic hysteresis? In what sen

More generally, what happens to the depinning transit
beyond the dissipative limit? If it remains critical—at least
some respects—for a range ofM, what is its nature? Can th
quasistatic behavior persist macroscopically for smallM in
spite of the presence of additional microscopic hysteresis
so, what is the size dependence of the hysteresis and re
phenomena? The system-size dependence is particularly
evant for geological faults for which the statistics of th
earthquakes are affected both by the nature of the drive
the distribution of the ‘‘sizes’’ of faults.

Several recent papers have undertaken some prelimi
studies of the effects of stress overshoots in models of
pinning of elastic manifolds. Reference@13# studied several
one-dimensional models with long-range elasticity and str
overshoots motivated by planar crack fronts driven by
plied loads. Reference@14# introduced a particularly simple
model with short-range static elasticity and analyzed
infinite-range limit in which all segments of the manifold a
equally coupled to each other. In this limit, the spatial pro
erties of the manifold are averaged away; only time dep
dence remains and mean-field theory becomes exact. S
mean-field models were the starting point for theoretical
derstanding of the finite-dimensional physics in the qua
static limit @5#. Whether or not they provide a useful startin
point beyond the dissipative limit, is one of the questions t
we must address.

In this paper, we investigate numerically and phenome
logically the finite-range version of the stress oversh
model introduced in Ref.@14#.

Outline

The remainder of this paper is organized as follows: In
following section we introduce the basic lattice model
which we focus. In Sec. III the general scaling picture
introduced and known results for the dissipative case
3-2
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summarized. In Sec. IV the critical behavior in the movi
phase is studied, initially for the dissipative case, and the
the presence of stress overshoots. We summarize a varie
evidence that the critical behavior that occurs as the driv
force is decreased until the system stops is in thesameuni-
versality class as the dissipative case.

Section V turns to the key aspect of overshoots: hys
esis. We analyze the hysteresis loops that occur when
system is stopped from the moving phase and restarte
gradually increasing the force. Various puzzling aspects
the data are discussed and some understanding of the hy
esis loops in terms of a low density of segments that can
readily triggered by an increase inF is reached. In the fol-
lowing section, studies of the dynamics and statistics of a
lanches that occur as the force is gradually increased
presented. These again lead to puzzling dependence on
shoot and pinning strengths, although some aspects of
avalanches appear very similar to those in the dissipa
limit. The data suggest that various subtle crossovers ma
occurring. In Sec. VII the dynamics of the nucleation of r
starting after a system has been stopped from the mo
phase are analyzed. It is found that over a substantial ra
of sizes, bubblelike nucleation can occur.

In Sec. VIII the puzzling aspects of the various sets
data are tentatively resolved in terms of a crossover a
function of length scale and system size that manifests it
in different ways as the various parameters are varied.
nally, in Sec. IX, the conclusions are summarized and ap
cations to the dynamics of earthquakes are discussed br

In the main body of this paper, we restrict consideration
weak enough overshoots that do not totally change the l
dynamics. But for sufficiently largeM, the overshoots caus
dramatic changes in the macroscopic behavior. Althou
these are interesting, they are probably peculiar to cer
aspects of the model; results on these will be presented
where@15#.

II. MODEL

Near the depinning transition, the dynamics is very jer
with segments of the manifold spending most of their tim
stationary or almost so, but occasionally getting unpinned
the forces from other segments and moving forward only
get pinned again by a combination of the newly explor
random forces and the elasticity. The inherent discretenes
theselocal jumpssuggests that we model the manifold as
large number of segments that can jump discontinuou
from one pinning position to another; this is also conveni
for numerical studies. We defineh(x,t) to be thesingle-
valuedscalar displacement of the manifold from some un
formed reference configuration with both the positionx and
the timet taken to be discrete. Note that by constraining
displacement field to be single valued, we exclude ‘‘ov
hangs’’ as well as defects such as dislocations that co
otherwise occur in periodic systems. The forces on a segm
of the manifold consist of three terms: the applied forceF, a
static random pinning forceh„x,h(x,t)…, and the stress
caused by the elasticitys(x,t).
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The stress depends linearly on the displacements of o
parts of the manifold via

s~x,t !5(
y

(
t.0

Jxy~t!h~y,t2t!2 Ĵh~x,t !, ~2!

where

Ĵ5(
y,t

Jxy~t! ~3!

and the sum is over nearest neighbors ofx. To model stress
overshoots, we assume the simplest possible form: that
overshoot only applies to neighbors and only lasts for o
time step, so that

Jxy~t50!5
1

Z
~11M ! ~4!

and

Jxy~1!52
M

Z
, ~5!

with Z the number of nearest neighbors. With this stre
transfer, the jump of any nearest neighbor ofx induces an
extra temporary stress on thexth segment. WhenM50, the
stress transferred to thexth segment is simply proportional t
the static curvature atx. This stress will not decrease wit
time as long as thexth segment does not move and the oth
segments only move forward or remain at rest; this limit
thus the dissipative dynamics already studied extensiv
However, for positiveM the stress on thexth segment caused
by a jump forward of one of its neighboring segments w
first increase by a larger amount than in the absence ofM and
then decreaseat the next time step to reach its quasista
value.

Modeling of the local pinning forces also involves su
stantial arbitrariness. In Ref.@14# we chose randomly space
pinning positions for each segment with uniform pinnin
strengths, but this choice did not affect substantially
mean-field behavior@15#. For our present purposes, it
more convenient to choose the pinning positions for e
segment to be uniformly spaced but with theiryield
strengths, the maximum force they can sustain, random
distributed. In particular, we take the distribution of the
yield strengths to be uniformly distributed from@0,f p

max#.
Because these random forces pin, or hold back, the m

fold the corresponding forcesh„x,h(x)…, take on negative
values in the range@2 f p„x,h(x)…,0#. With this form of the
pinning forces, the equation of motion is simply given by

h~x,t11!5h~x,t !1Q@s~x,t !1F2 f p~x,h~x,t !…#, ~6!

whereQ is the unit step function. TheQ function is imposed
so that a segment can move only forward and does so w
the net forcef (x) on it ~the argument of theQ function!, is
positive; otherwise it remains stationary. With this dynami
when a segment jumps its displacement always increase
3-3
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one. As long asv̄!1, the ~artificial! upper limit on the ve-
locity, this automaton dynamics mimics the continuous ti
motion reasonably well.

Note that in the absence of elasticity, withM50, Fc

5 f p
max with each segment becoming stuck on an anom

lously strong pinning site. In the presence of the elastic
not all of the segments can be simultaneously pinned
strong pinning sites, and the critical force will decrease.
weak pinning forces, however, the definition of the appl
force in this model is somewhat pathological: when relea
from a pinning segment, a segment can jump forward
enough that the total force on it becomes negative and it
then pull forward other segments resulting in overall mot
even if F is negative. To make it more realistic, one cou
replaceF by F11; so that there is always enough force
make the forces at pinning segments non-negative. With n
zero M, another adjustment should really be made as m
realistic forms of stress overshoot involve a concomit
negative force on the segment that has moved. Since the
of the applied force is entirely a convention, we will n
make these adjustments; this will mean, however, tha
some regimes the critical ‘‘force’’ will be negative.

Several additional aspects of the model need to be sp
fied: the initial conditions and the order of the updating.
avoid lock step or other ‘‘facetinglike’’ behavior@16#, we
choose the pinning positions of each segment to be of
from one another by random amounts in the interval@0,1#.
Because of the integer character of the jumps, the fractio
part of the displacement of a given segment does not ev
with time. It might be thought that the displacemen
independent randomness induced by this constraint c
dominate over the randomness of interest, especially as f
determining the variations of critical forces, etc., in finit
size systems. Indeed, such an effect does occur for sys
with periodic randomness such as charge density waves@5#,
resulting in variations of the critical force in finite sampl
that are controlled by an exponentn8 that isdifferentthan the
true correlation length exponentn; it is the former that must
satisfy the rigorous inequality@17#, n8>2/d while the truen
can be smaller. But in the present case it can be shown
the additional randomness is exactly equivalent to anh inde-
pendent spatially random force that is the derivative o
random function. This type of random force cannot comb
with the h dependent randomness to yield an effective n
gradient random force because of the statistical tilt symm
@18#. It will thus only cause variations in the critical force o
finite samples that that are smaller by at least one powe
AL than is the case for charge density waves. The effect
the random shifts we have added are thus expected t
subdominant to the primary sources of randomness for la
systems~although they could give rise to additional corre
tions to scaling!. The fact that the variations in the critica
forces in finite-size systems decrease substantially faster
the inverse square root of their area—which wouldnot have
occurred for charge density waves—supports this assert

The updating of the displacements is done inparallel af-
ter computing all of the stresses. While there are altern
sequential methods of updating, this parallel method requ
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the least amount of computation and does not appear to
troduce any troublesome artifacts in the regime of smal
M of primary interest here.

Finally, to limit boundary effects, we impose period
boundary conditions onh(x,t). This is especially importan
as we will use finite-size scaling to analyze much of the da
this is substantially more straightforward with period
boundary conditions. Our simulations are restricted to t
dimensions which we chose because of the availability of
widest range of system sizes without running into the co
plications associated with very large stresses that aris
one-dimensional depinning with short-range interactions.
study systems of sizeL3L up to 2563256 with most of our
‘‘large’’ system data on 1283128 samples.

The ‘‘rules’’ of the cellular automaton model are simpl
at each time step, for eachx, if f (x,t).0 thenh(x,t11)
511h(x,t) and a new randomf p(x) is chosen uniformly
from the interval@0,f p

max#; otherwiseh(x,t11)5h(x,t). To
study the transition as it is approached from the mov
phase, we start with a largeF.Fc

↓ and then decreaseF at a
slow rate that is chosen to avoid transient effects as descr
in detail in Sec. IV. To study the transition as it is approach
from the stopped phase,F is increased adiabatically from
large negative value, i.e.,F is increased just enough to trig
ger the segment whose net force is maximum and then
fixed until the motion of the other segments in response
the triggered segment stops. More details are given in S
VI.

For the statistical analyses, many different realizations
generated via different initializations of$h(x)% chosen from
a uniform distribution on the interval@0,1#—the random
offsets—and$ f p(x)%. Error bars due to statistical uncertain
ties are quoted throughout the paper.

III. SCALING AND DISSIPATIVE DYNAMICS

Before presenting results for the systems of interest w
stress overshoots, we briefly summarize the scaling beha
that one observes near the critical force in the absenc
stress overshoots; i.e., forM50. As the force is adiabati-
cally increased from zero, local instabilities lead to a succ
sion of avalanches, most of which will be small, but which
can occasionally become large as the unique critical fo
Fc0 is approached. AboveFc0 the mean velocity in the sta
tistical steady state rises continuously with an exponentb.
The motion is jerky out to length scales of order the veloc
correlation lengthjv which diverges at the critical force as

jv;
1

~F2Fc0!n
. ~7!

The characteristic time for relaxation on scales of orderjv is

t;jv
z ~8!

and in this time the manifold typically moves forward by a
amount

Dh;jv
z . ~9!
3-4
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These three exponents,n, z, andz, characterize the scalin
behavior near the transition. The velocity exponent is rela
to these via the observation that the mean velocity is of
order of the characteristic displacement per character
time, so that

v̄;jv
z2z;~F2Fc0!b ~10!

with

b5~z2z!n. ~11!

In the pinned phase, the critical behavior as the force
adiabatically increased can, in the absence of stress o
shoots, be related to that in the moving phase review
above. In particular, the scaling of the dynamics and shap
the avalanches, the probability that they will be large,
divergence asFc0 is approached of the cutoff size in the
distribution, and the ‘‘roughness’’ of the manifold at the cri
cal point are all given in terms of the same three expone
In Sec. VI we will discuss the avalanches in detail, but
now we focus on the macroscopic behavior such as the
locity in the moving phase and the mean displacement
the pinned phase.

The mean displacement in response to a spatially vary
applied force yields, via a statistical symmetry of the syste
a scaling law that relates two of the exponents. This rela
can be derived from the average static polarizability

x~q,v50![
]h~q,v50!̄

]e~q!
~12!

to a perturbing forcee(q)cos(q•x). A change of variables to
h(x,t)5h8(x,t)2¹22e(x), yields an equation of motion fo
h8 that is statistically identical to the original one forh,
independentof the perturbing force. Therefore

]h~q,v50!̄

]e~q!
5

1

12J~q!
;

1

q2
. ~13!

Since the polarizability should scale asDh/DF
;jz11/nX(qj), with X a scaling function, this yields the
scaling law@7#

z1
1

n
52. ~14!

Dissipative exponents

The critical exponents forM50 take simple mean-field
values ofn51/2, z52, characteristic of diffusive dynamics
and z50 above the critical dimension ofdc54 for short-
range elasticity. The velocity scales withb51 @5#.

Below four dimensions, renormalization group expa
sions have been performed that justify the scaling laws
claims of universality as well as yielding results for the e
ponents as expansions in powers of

e[42d: ~15!
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~16!

and

z'22
2

9
e. ~17!

These yield

b'12
1

9
e. ~18!

Recently Chauveet al. @19# have computed these exponen
to second order ine, obtaining

z'
e

3
~110.14331e! ~19!

and

z'22
2

9
e20.04321e2, ~20!

although there are some doubts about the validity of th
second-order results@7#.

IV. CRITICAL BEHAVIOR IN MOVING PHASE

We will shortly turn to presentation of our numerical r
sults for the critical behavior in the moving phase. But fir
it is instructive to summarize the behavior found in t
mean-field limit for smallM and to consider several possib
scenarios that might be observed in short-range systems
can then determine which scenario is most consistent w
the data.

A. Mean-field limit and scaling scenarios

In the mean-field limit all of the sites are coupled to all
the others so that the number of ‘‘nearest neighbors’’Z is
equal to the number of segments,N ~more precisely,Z5N
21). In this limit, the critical force is found to beunchanged
for M less than a critical value,Mc51. The velocity versus
force curve is modified for any nonzeroM, however, but the
exponentb remains at its quasistatic value ofb51 for M
,Mc . The other universal properties of the transition a
also unchanged for smallM, including the lack of hysteresis
in steady state and the asymptotics of the distribution of la
avalanches as the critical force is approached from below

The simplest scenario for the short-range systems of
terest would be like that of the mean-field limit: unchang
critical behavior and no macroscopic hysteresis for smallM.
But previous work has shown that thiscannotbe the case. As
shown in Refs.@13,20#, any stress overshoot will cause th
critical force to be shifted downwards, in the sense that
namic behavior can persist for some (M -dependent! range of
forces below the quasistatic critical forceFc0. This implies
that some form of macroscopic hysteresis can exist si
locally stable—at least linearly stable—static configuratio
3-5
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exist up toFc0. But whether such configurations are nonli
early stable to, for example, an arbitrarily small increase
F, is a question of substantial importance to which we w
return later. For now, we focus on the moving states and h
they stop as the force is lowered.

The simplest scenariothat cannot immediately be rule
out is a modified version of the mean-field scenario: a vel
ity versus force curve with a well defined critical force,Fc

↓ ,
that is nonhysteretic as the force is decreased; history in
pendent steady states aboveFc

↓ ; and critical exponents
b,n↓,z↓ unchanged from their quasistatic values. In ren
malization group language, this would correspond toM be-
ing an irrelevant perturbation, at least as far as behavior
the moving phaseis concerned.

If this mean-field-like scenario indeed applies for smallM
to the finite-range model, we expect the following scali
behavior for bothM and the proximity to theM-dependent
critical force.

f [F2Fc
↓~M ! ~21!

and

v̄~M ,F !; f bBS M

f fD , ~22!

with the crossover exponentf,0 indicating the irrelevance
of M, and B a scaling function. In analogous situations
equilibrium statistical mechanics, if a parameter such asM
does not change the nature of the transition, the effect oM
on Fc

↓ can be taken into account perturbatively. Because
the singular nature of the critical fixed point that describ
the quasistatic depinning—resulting, in part, from the a
sence of thermal fluctuations but, more essentially, from
jerky nature of the motion—the ‘‘analytic parts’’ might no
be smooth functions ofM, but under the assumption that the
are, we expect that

Fc
↓~M !5Fc02aM2bM21•••. ~23!

Nevertheless, there can be singularcorrections to scaling
determined by the form ofB and the crossover exponentf.

This scenario, in whichM is irrelevant when it is small,
we call thedissipative scenario. We note, however, that thi
scenario is compatible with a change in behavior at a crit
value ofM as occurs in mean-field theory. This would giv
rise, forM close to its critical value, to a crossover to som
kind of multicritical behavior emerging at larger velocities

More interesting behavior would occur if the qualitativ
mean-field results on the effects of smallM do not simply
carry over to the finite-range case. This would be the cas
M is arelevantperturbation and would correspond to a cro
over scaling function, such asB in Eq. ~22! with f positive.
A relevant perturbationM would yield a singular correction
to the critical force of the form

@Fc02Fc
↓~M !#sing;M1/f, ~24!
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which would dominate over the leading~or subdominant!
analytic shift iff.1 ~or f. 1

2 ). Earlier numerical results by
Ramanathan and Fisher suggested that this might be the
@13#.

There are two simple scenarios for the velocity vers
force if M is relevant. One possibility is that the depinnin
transition is drivendiscontinuous immediatelyfor any non-
zeroM. The average velocity would then have a discontin
ity of

v̄min;Mb/f. ~25!

We call this thefirst-order scenario.
If M is relevant but the transition is stillcontinuous, one

would expect it to be in a different critical universality clas
In this case, the scaling functionB(y→`);yr, so thatv̄( f )
remains continuous but with a new exponent

b5b02fr ~26!

with b0 the quasistatic value. Asymptotically close to th
critical force the new critical behavior would be observe
but for f @M1/f the average velocity curve would cross ov
to the dissipative behavior. We refer to this as thenew uni-
versality class scenario.

While more exotic scenarios may be possible, we w
limit our consideration to the three scenarios enumera
above.

Note that we have explicitlynot considered scenarios i
which the velocity in the moving phase is hysteretic. A
though we cannot rule this out entirely, the fact that the r
dom environment through which the manifold moves acts
some extent, like thermal noise, suggests that if there w
more than one possible moving phases for the same app
force, there would be some stochastic process by which
system could jump from one to the other. The result of t
would be that, as in equilibrium transitions, true ‘‘coexis
ence’’ would not be possible over a range of parameters. T
argument doesnot apply to coexistence between static a
moving phases, as the former are not subject to tim
dependent ‘‘noise.’’

B. Numerical results in moving phase

Our primary numerical results in the moving phase we
carried out on square two-dimensional samples of linear
mensionL5128. The maximum pinning forcef p

max was cho-
sen to be either 0.5 or 1.0, so that the typical pinning force
comparable to the change in elastic forces caused by jum
of one neighbor of a segment.

We focus on the results forM small enough that the ef
fects of a tendency for the two square-lattice sublattices
move alternately, are not too significant—forf p

max50.5, we

study M<0.8. Figure 1~a! shows v̄(F) for 0<M<0.6 in
increments of 0.2. To generate these curves we start, for e
M at F.Fc

↓ , with almost flat initial conditions—segmen
displacements random in (0,1)—and then decrease the
plied force very slowly untilFc

↓(M ) is reached.
3-6
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For our finite systems withL5128, Fc
↓(M ) is defined as

being the force below which the system halts after 12 0
time steps, a value chosen so as to be long enough for
sients to decay, but not so long that rare configurations of
randomness with anomalously strong pinning forces
dominate.

For M50, there is a finite-size crossover regime in whi
the system may stop due to an anomalously strongly pin
region and the infinite system behavior will no longer
observed. This tends to occur when the average velo
while it is still moving is of orderL2b/n. For L5128, this
value is about 0.013 and with this average velocity, the ma
fold will typically travel a distance several times the chara
teristic displacementLz within 12 000 time steps. As we
shall see, our estimates are that at least one measure o
characteristic time scale, which grows asLz, is only weakly
dependent onM. Thus, we use this same criterion for no
zeroM, while being aware that it may bias our scaling resu
slightly such that if time scales do change substantially w

FIG. 1. ~a! Steady-state velocity,v̄(F), for L5128 and f p
max

50.5. The applied force is changed by an increment of 0.005 a
the manifold has been equilibrated for 12 000 time steps~see text!.

Initially, F.Fc
↓(M ) and then it is decreased untilv̄50 before be-

ing increased back up again to its starting value. The filled arro
indicate this cycling ofF. The errors bars are smaller than th
symbols.~b! The same as~a! but with the curves shifted by an
approximateFc

↓(M ).
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M we may be observing more of either finite-size effects
nonequilibrium effects; the former if the time scale decrea
with M and the latter if it increases withM. For other system
sizes, the equilibration time is decreased correspondin
roughly with Lz0, i.e., according to the dynamic scalin
found in the dissipative limit.

We first study the dependence onM of the critical force,
Fc

↓ , below which the steady-state motion ceases, in part
lar to test whetherFc

↓(M ) is a singular or smooth function o
M ~see Fig. 2! The results, along with a quadratic fit,

Fc
↓~0!2Fc

↓~M !50.27~60.01!M10.012~60.01!M2,
~27!

are shown in Fig. 2.@Note that if we had included a consta
in the fit, the constant would have vanished within one st
dard deviation, as it should, and the linear coefficient wo
have been only slightly modified to 0.2660.01.# A natural
expectation—although overly naive—is a linear decrease
Fc

↓ by an amountM /Z. For smallM, this appears to work
rather well. The reason for this linear shift and the corre
tions to it will be discussed later.

The analytic fit should be compared to a fit—with th
same number of parameters—to an arbitrary power-lawM
dependence of the shift inFc

↓ such as would be observed ifM
were a relevant perturbation. The best fit to theFc

↓ data
yields an exponent 1/f51.1860.02; note, however, that by
eye the quadratic fit looks slightly better than the power-l
fit. Although with a weakly relevantM with a crossover ex-
ponent less than unity, as the power-law fit suggests,
would presumably have a linear analytic term as well a
thus the inferredf'0.85 should not be taken too serious
In any case, one must ask whether it is consistent with
other data. It does not appear to be: if we use this value of
to try and find a scaling functionB(M / f f) for the velocity
data of Fig. 1~a!, the curves do not collapse. This sugge
that eitherM is irrelevant, or that it is sufficiently weakly
relevant that the crossover exponentf is small enough that it
would not dominate the shift inFc

↓ . Other data, as summa

er

s

FIG. 2. Critical force,Fc
↓(M50)2Fc

↓(M ), as a function ofM
indicated by filled circles. The solid line is the result of a quadra
fit bM1cM2 with b50.2760.01 andc50.1260.01, while the
dotted line is the result of a fit toaM11D with a50.38460.003 and
D50.1860.02. The error bars are smaller than the symbols.
3-7
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rized below, suggest that, in fact,M is irrelevant, at least for
the steady-state moving phase.

The mean velocity data can be used to obtain the crit
exponentb and see whether it depends onM. Figure 3 shows
a log-log plot of thev̄(F) curves with the bestFc

↓(M ) value,
which makes the curve the most linear, determined by h
for eachM. The error bars indicated are the rms variations
the average velocity over ten samples. The values of
applied forces used are separated by an interval o
31024, one tenth of those used in Fig. 1~a!.

The velocity critical exponentb inferred from these data
is, for M50,

b050.6660.03. ~28!

Surprisingly, this value appears to be consistent within o
standard deviation with the data for all theM values shown.
Even forM50.6, we find

b50.6760.1, ~29!

although the straight line fit is only over one and a h
decades in the reduced force,f, substantially less than th
three decades of the fit forM50. From Fig. 1~a!, it is ap-
parent that this reduced range of scaling is primarily due
larger amplitude for the singular velocity for largerM @see
Fig. 1~b!#.

The data suggest that the evidence is at least consi
with the dissipative critical behavior obtaining asympto
cally for smallM; i.e., with M being an irrelevant perturba
tion.

We must be careful, however, especially as Figs. 1~a!, ~b!
and 3 indicate that the minimum average velocity is incre
ing with increasingM. Might this observation suggest tha

FIG. 3. Log-log plot of the average steady statev̄ as a function
of f 5F2Fc

↓(M ), whereFc
↓(M ) is varied to optimize the linearity

of each curve within the scaling regime. The symbols used are
same as in Fig. 1~a!, with the filled squares representingM50.2,
f p

max51.0. Each curve represents an average over ten samples
the error bars representing the rms sample-to-sample variation
the velocity. The applied force increment is 0.0005 for appro

mately v̄,0.1, while for v̄.0.1 the force increment is 0.005. Fo
the weaker randomness, the best fit slope forM50.0 is 0.66
60.03; for M50.2 it is 0.6660.02; for M50.4 it is 0.6860.05;
and for M50.6 the slope is 0.6760.10. For the stronger random
ness atM50.2, b50.6660.02.
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there is a discontinuity opening up as a power ofM, perhaps
suggesting that the transition is driven discontinuous imm
diately? We can check the data against thefinite-size cross-
over behavior expected in theM50 quasistatic limit; this
would yield

v̄min;L2b/n. ~30!

Figure 4 tests for this scaling and finds it to be consist
with the data: even forM50.4, the slope of the log-log plo
is 20.9160.01, which agrees within one standard deviati
with the M50.0 slope. While we do observe an increase
the minimum average velocity with increasingM at fixed
size, it isnot the size-independent power-law increase w
M that would have been expected if the transition beca
discontinuous. Instead, there is anM-dependent coefficien
associated with the average velocity, just as occurs for sm
M in mean-field theory. Similar minimum velocity data we
also obtained for stronger randomness, withf p

max51. We thus
see that the finite-size data are consistent with the dissipa
scenario, withsmall stress overshoots being irrelevant f
the velocity versus force curves.

But it is still possible that a new critical universality clas
is emerging for smallM if r!1, so that the emergence of th
new universality class would be difficult to detect by simp
measuring the velocity exponent as this would be lit
changed from its dissipative-limit value. We therefore lo
more closely at the finite-size crossover regime to investig
whether other aspects of the behavior really look similar
the M50 quasistatic depinning.

Anticipating that it might be the stopping behavior th
would distinguish between quasistatic and overshoot dyn
ics, we have explored some of the dynamics of the stopp
process. Given that there is a distribution ofFc

↓’s, we let the
manifold equilibrate at anF three standard deviations abov
the average ofFc

↓(M ). We then loweredF to the average of
Fc

↓(M ) and waited for the manifold to come to a stop. Figu

e

ith
in

-

FIG. 4. Plot of the minimum spatially averaged velocityv̄min as

a function of bothM, L and f p
max. For the determination ofv̄min , see

the text. The symbols for the variousM ’s are the same as in Fig
1~a!, except for the left triangles that representM50.1. The best fit
slope for theM50.0 curve is20.9060.02, for M50.1 it is
20.8960.03, for M50.4 the slope is20.9160.01, and forM
50.6 it is 20.8360.04. Each set of data are averaged over
samples.
3-8
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5 plots the instantaneous spatially averaged velocityv(t) av-
eraged over many samples as they come to a stop at
tstop. Here we explicitly see that the variousM samples come
to a stop in a similar gradual manner; only the amplitud
vary. The differences between the curves are presumably
to the M dependence of the amplitude of the steady-s

v̄(F) curves. The final stages of the stopping process ca
analyzed—at least for the dissipative (M50) case—by a
simple scaling argument. Once only a small fraction of
system is still moving, the average velocity will be inverse
proportional to the areaLd. Since the velocity scales asjz2z

and lengths ast1/z, we expect

v~ t !;
~ tstop2t !(d1z2z)/z

Ld
; ~31!

the data on a log-log plot, Fig. 5, are reasonably consis
with this for all values ofM tested.

We can also probe the finite-size crossover regime
terms of theroughness. We define themaximum widthof the
manifoldWmax as the absolute value of the maximum dev
tion of the displacement from its spatially averaged valueh̄:
Wmax5^maxuh(x)2h̄u&. This should scale asLz with z'2/3
for M50. If M is irrelevant, then the same should hold tr
for all small M. Figure 6 demonstrates that the maximu
width does indeed obey this scaling with system size,
with apparent values ofz that are somewhat larger than2

3

even forM50.0 for which z50.7560.05 is inferred from
the data withf p

max50.5. Although the exponent appears to
M independent, there is anM-dependent coefficient with th
overall width increasing—albeit only slightly—with increa
ing M. For the stronger randomness data,f p

max51, this ten-
dency is less strong but that is because the value ofM at

FIG. 5. Log-log plot ofv(tstop2t) as a function of the time
before the motion ceases attstop. The data were obtained from
uniformly random initial condition on the interval@0,1# and equili-
brated at an applied force higher thanFc

↓ by three times the standar
deviation of this critical force. After equilibration, the applied forc
was lowered to the averageFc

↓ , whereuponv(t) is recorded until
the manifold eventually stops. The solid line is the theoretical
pectation within the scaling regime. The slopes of the numer
data, in order of increasingM, are 0.83160.001, 0.84660.002,
0.98160.003, 1.08560.004, and 0.97560.004, respectively. Note
that for theM50.8 curve,f p

max51.0. Each curve represents an a
erage over those of approximately 500 samples.
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which the behavior changes character is larger for stron
pinning. Overall it appears that, at least up untilM50.6, the
finite-size crossover regime looks similar to the dissipat
M50 case.

We can also determinez from the power spectrum of the
displacement just after the motion has stopped from the m
ing phase; we use the same equilibration time and app
force increments as in Figs. 7~a! and 7~b!. In two dimen-
sions,

^uĥ~k!u2&5E d2xeik•x^h~x!h~0!&;k22z22, ~32!

where the brackets denote averaging over samples. F
Fig. 8~a! we see that fitting to this form over a range of o
and a half decades for samples withL5256 yieldsz50.72
60.02 and 0.7460.01 forM50.0 andM50.5, respectively,
again in mutual agreement and similar to the values from
maximum width discussed above. But again, appare
slightly larger than thez5 2

3 value from the first-ordere
expansion. Again, the cumulative evidence suggests tha
least up untilM.0.7, it is not likely that a new universality
class is emerging in the ‘‘equilibrium’’ moving or stoppe
phase asv̄→0.

It is useful to compare our values of the exponentz with
those previously obtained. Leschhornet al. found, in numeri-
cal simulations,z50.7560.02 for M50.0 @21#. The most
solid theoretical result is thate/3 is alower boundfor z. This
comes from application of finite-size scaling to the conn
tions between the variations of the critical force and the c
relation length exponent—see discussion below. Wh
Narayan and Fisher@7# had argued that the value ofe/3 is

-
l

FIG. 6. The average maximum widthWmax of stopped mani-
folds as a function ofL for variousM ’s and f p

max’s. The data are
taken after the manifold has stopped moving following a grad
decrease of the driving force. EachWmax is an average over ten
samples. The slopes can be used to extract the exponentz. For the
left part of the figure,f p

max50.5; theM50.0 data are best fit by
0.7560.05; M50.2 yields a slope of 0.7260.03; and forM50.6
the slope is 0.7560.05. For the the right plot,f p

max51.0; for the
M50.0 curve, the slope is 0.7560.02; for M50.2 it is 0.81
60.02; theM50.6 slope is 0.7560.01; while for M50.8, the
slope is 0.7960.01. Note that the overall magnitude ofWmax is
slightly larger for the stronger pinning.
3-9
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FIG. 7. ~a! Log-log plot of the square root of the power spe
trum of a manifold in steady state both just above the depinn
transition, open symbols, and just after the manifold has stop
after the force is decreased gradually, filled symbols. The var
sets of data have been shifted along the vertical axis for clarity.
the moving configurations,F520.0775 for M50.0, F5
20.1389 forM50.2, andF520.2436 forM50.5. For eachM
the data are averaged over 100 samples of sizeL5256. The rough-
ness exponentz can be extracted from the linear fits over the a
propriate wave vector interval: the expected slope is2(11z). The
quoted error bars are a measure of the dependence of the app
slope on the range over which the data are fit. The slopes of
moving data are21.6560.01, 21.6560.02, 21.6960.01 for M
50.0, M50.2, andM50.5, respectively. While the slopes for th
stopped data are21.7260.02 and21.7460.01 for M50.0 and
M50.5. Note that at the smallest wave vectors flattening is evid
in the moving data but not the stopped data, as expected. Also
the appearance of a peak at the zone corner in the moving data
represents the tendency for alternating sublattice motion that
curs, especially for largerM. ~b! We plot data forM50.8,f p

max

51.0, andL5256 for both stopped~light dots! and moving~dark
dots! configurations. We extract az of 0.7560.01 for both curves.
These curves have not been shifted with respect to each othe~c!
Same plot as~a!, but without any shifting of the data and over
narrower region ink space, so that the amplitudes can be compa
02160
exact to all orders ine, Chauveet al. @19# have computed the
exponents to second order ine and found that the roughnes
exponent is increased toz5(e/3)(110.14331e)1O(e3),
which naively extrapolated to two dimensions yieldsz
'0.86, substantially higher than the value inferred nume
cally. Whether or not this discrepancy is due to the neglec
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FIG. 8. ~a! Dynamical roughening as the manifold starts movi
just aboveFc

↓ from almost flat initial conditions. The mean-squa
width of the manifold as a function of time is shown on a log-lo
plot. The curves have been shifted along the vertical axis for cla
The expected slope in the scaling regime of these curves is 2z/z, so
that we can extract the dynamic exponentz after measuringz inde-
pendently@~a!#. The linear fits yield a slope of 0.8660.01 for M
50.0 and 0.8660.01 forM50.2. The scaling regime should obta
only for t!jz; since we are above the transitionj!L so that a
crossover to time-independent roughness should occur whet
;jz. The crossover scale is in rough agreement with theoret
estimates. ForM50.5 the behavior is rather different from smalle
M: they exhibit too much curvature to be readily explained by c
rections to scaling and a substantial overshoot that we believe is
to the merging of many nucleating bubbles as the steady sta
approached. The apparent slope in this regime is 1.2060.02, al-
though this is most likely just an effective exponent. For the str
ger randomness,f p

max51.0, at M50.8 a fit would yield 2z/z
50.9960.01. Despite this larger dynamic roughening expone
the static roughness exponent is also larger and the inferredz is not
much changed from theM50 data.~b! Same as~a! but without any
shifting of the curves.
3-10
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terms higher order ine, due to some problem with the ex
pansion, or due to corrections to scaling remains in doub
is worth noting in this context that for one-dimensional sy
tems with the long-range interactions appropriate for cr
fronts, Ramanathan and Fisher@13# found that to obtain re-
liable and universal values ofz, analyses of corrections t
scaling were needed. With these included, they found a v
of z very close to that predicted from the first-ordere expan-
sion without any higher-order corrections.

For completeness, we have also studied the spatial po
spectrum of the displacements just above the depinning t
sition. Figures 7~a! and 7~b! shows the square root of th
averaged power spectrum forv̄!1. The roughness expo
nents obtained forM50.0,0.2,0.5 are again roughly i
agreement with each other—z50.6560.01, 0.6560.02, and
0.6960.01, respectively—but slightly smaller than tho
found for the stopped manifold. In the moving phase, ho
ever, there should be a crossover at long wavelengths,kjv
;1, to the Edwards-Wilkinson universality class with on
logarithmic roughness@22#. This arises because on scal
larger thanjv , the motion makes the randomness appear
white noise in both space and time and the displacem
correlation function becomes

^ĥ~k,v!ĥ~2k,2v!&;
1

u2 iv1Dk2u2
, ~33!

with D(F) an effective diffusion constant. This crossover
observed for the smallestk in Fig. 7~a! where the slope of the
power spectrum decreases in contrast to the data taken
the motion has stopped. We note that this difference in sl
between the moving and stopped spectra is not as promi
when the randomness is stronger as shown in Fig. 7~b!.

For the moving configurations we observe a peak in
power spectrum atk5(p,p). This peak is caused by th
tendency of one segment’s motion to trigger jumps of
neighbors at thenext time step. The structure and amplitud
of the peak look similar for all of theM ’s shown, although
the wave vector dependence indicates that there are s
what more segments participating in the sublattice beha
at M50.5 than atM50; but only about a third more.

The dynamic exponent in the moving phase,z, can be
determined in various ways from data near the critical for
We first study thenonequilibrium rougheningof the mani-
fold starting with almost flat initial conditions. We define

w2~ t !5^@h~x,t !2h~ t !2&;t2z/z, ~34!

with the overbar denoting spatial averaging over the sam
The scaling behavior is expected for times short compare
the critical correlation timet which diverges atFc

↓ . Once the
roughness exponent has been calculated independently
the same set of configurations as in Fig. 7~a!, z can be ex-
tracted from the log-log plot ofw2(t) vs t as is done in Figs.
8~a,b! For M50.0 andM50.2 we see that the dynamic ex
ponentsz are very similar:z51.5160.03 for both. However,
for M50.5, the data are somewhat further above the tra
tion as they correspond to an equilibrium average velocity
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v̄50.08. While these data could be fit with the samez over
a limited range of times, there is clearly some new phys
emerging: an upward curvature on the log-log plot and
substantial—more than a factor of 2—overshoot in the
locity before it settles down to its steady-state value. T
effect is related to the change in the dynamical onset of
motion to which we will turn in Sec. VII.

Aside from the transient effects associated with appro
to steady state, all our measurements in the moving ph
suggest that the critical behavior is most consistent with
dissipative universality class obtained for all sufficien
small M as the transition is approached from above. This
despitetheM-dependent shift inFc

↓ and the concomitant hys
teresis that is possible because of the existence of line
stable static configurations up toFc0 which is larger than
Fc

↓ . We will analyze this paradox later. For now, it appea
that the mean-field-like scenario has won out over the fi
order scenario and the new universality class scenario.

C. Amplitude ratios

If we accept thatM is irrelevant for the steady-state mov
ing critical behavior, the observed changes asM is increased
in the moving phase forF just aboveFc

↓ appear to be prima-
rily attributable to the increased amplitudeAv(M ) of the
velocity nearFc

↓ , v̄;Av(M ) f b. As seen in Figs. 1~b! and 3,
for largerM, the velocity rises more rapidly with increasin
F until it becomes close to12 at which point sublattice effects
set in. A similar increase in the amplitude of the velocity
observed in mean-field theory, with the exponentb un-
changed for smallM but the amplitude of the velocity grow
ing with M. In both cases, this implies that the width inF of
the depinning transition narrows with increasingM—naively
just by the narrowing of the range ofF2Fc

↓ over whichv̄ is
small.

If the universality class of the critical behavior in th
moving phase is independent ofM over a range ofM, then
there should be various universal relations between non
versal coefficients:universal amplitude ratios. A priori, we
would expect three nonuniversal scale factors associ
with the scaling relationships between length and, resp
tively, deviation from criticality,F2Fc

↓ ; displacement, and
time. We can define these, for example, by the scaling of
correlation length,

jv'S AF

F2Fc
↓D n

; ~35!

mean-square displacements at separations smaller thanj,

^@h~x,t !2h~0,t !#2&'Ah
2uxu2z; ~36!

and velocity

v̄'
Ah

At
jv

2b/n'
Ah

At
S F2Fc

↓

AF
D b

5Av~F2Fc
↓!b, ~37!
3-11
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where we measure all lengths in units of the lattice const
But in the absence of stress overshoots the statistical ‘‘
symmetry of the system that relates the exponentsz and n
via the triviality of the averaged response to a static spati
varying additional applied force, also relates the associa
coefficients:

AF

Ah
5CKK, ~38!

whereCK is a universal dimensionless coefficient andK is
the long-wavelength elastic constant, which, in our mode
simply the inverse of the coordination numberZ.

For M50, we thus expect that amplitudes of scaling la
that only involve the three exponentsz,n, andz should be
expressible in terms of the two amplitudesAh and At only.
For example, the rms variations in the critical forceFc

↓ in
finite-size systems should be expressible in terms ofAF or,
via Eq. ~36!, Ah :

Avar@Fc
↓~L !#'CDCFL21/n ~39!

with CD universal.
It is not clear,a priori, whether the statistical tilt symme

try argument can be applied in the presence of stress o
shoots and the concomitant local hysteresis. This is beca
in essence, it relies on the history independence of lin
response of at least some quantities. In the moving phase
which we are currently focusing, it seems reasonable that
argument should apply and the amplitude ratios hence
related as in the dissipative case. But we should remain a
to the possibility that apparent failure of expected scal
laws may be due to this assumption.

Qualitative examination of the numerical data for t
roughness@e.g., Fig. 7~a! and the variations in the critica
forceFc

↓ , ~see Fig. 9!# suggests that neither of the amplitud

FIG. 9. Log-log plot of the rms variations ofFc
↓(M ) as a func-

tion of the system lengthL. The inverse correlation exponents 1n
can be inferred from the slopes. For theM50.0 curve the slope is
21.2960.03; forM50.2 it is 21.2960.02; forM50.4 the slope
is 21.1860.06; and forM50.6 it is 21.2260.03. For the stron-
ger randomness data, whenM50.8, the slope is 1.2160.03, while
for M51.0 it is 1.1960.05. The dotted line along theM50.0 curve
is the result of a fit that includes a correction to scaling with
correction exponent23 and correction amplitudeBn50.7860.01;
the inferred modified correlation length exponent is21.3060.03.
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Ch andCF are strongly dependent onM in the range studied
One would then guess that the dependence of the ampli
of the velocity,Av(M ), on M is primarily caused by ade-
creasein the characteristictime scaleas M increases. This
will have consequences for the behavior of other quanti
as will now be discussed.

A useful quantity to study is the temporal fluctuations
the instantaneous spatially averaged velocityv(t) in finite-
size samples: this has information about both length and t
scales. For a fixed average velocityv̄, the magnitude of the
fluctuations should increase with increasingM because the
system is effectively closer to the transition. Since regions
size of the order of the velocity correlation length will fluc
tuate roughly independently, the variance of the instan
neous velocity should, in a system much larger thanj, be

var~v ![^@~v~ t !2 v̄ !2#&' v̄2
jv

d

Ld
. ~40!

Since we have not yet defined the correlation length p
cisely, this could well serve as its definition, thereby fixin
the definition of the amplitudeAF . The universality of the
amplitude ratios can then be checked by comparing theM
dependence of the amplitude of var@v(t)# with those of the
variations inFc

↓ and the roughness. These results are p
sented in Table I.

The correlation timetv can also be obtained from th
truncatedvelocity fluctuations,

G~ t ![^v~ t !v~0!&2 v̄2. ~41!

Integrating over time yields,

E G~ t !dt'Cvvtvv̄2
jd

Ld
~42!

with Cvv a universal coefficient. The resultingtv can, to-
gether withjv , be used to check other scaling relations~see
Table I!. Note, however, that there are difficulties associa
with the subtraction needed to obtain the truncated corr
tions in the most interesting regime in which the fluctuatio
are large and an accurate extraction ofv̄ problematic.

The velocity-velocity correlations can also be used
probe the nature of the dynamics; in particular, by study
the power spectrum which is the Fourier transform,Ĝ(v) of
G(t). To understand how this is expected to behave in
dissipative limit, it is useful to consider thelocal velocity-
velocity correlation function̂ v(x,t)v(0,0)&. At long dis-
tances,uxu@jv or time separations,t@tv , this will approach

v̄2. But within a correlation space-time volume, the loc
velocities will be characteristic of avalanche events a
hence be fractal. The correlations will be proportional tov̄
times a conditional expectation ofv(x,t) given that there is
motion—i.e., a jump—at (0,0). These conditional corre
tions within the space-time correlation volume will refle
the fractal structure, being of order 1/uxuz2z or 1/t12z/z,
3-12
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TABLE I. Universal amplitude ratio data. The parentheses
note the uncertainty in the last digit of the quoted amplitudes. T
first row isM; all the data shown havef p

max50.5. The second row is
obtained from the amplitude of the Fourier transform of theh-h
correlation function forL5128 slightly aboveFc

↓ like the data
shown in Fig. 7~c! for L5256. The third row is the combination o
amplitudes Ah /At determined from the combinatio

v̄(Ld/2(G(0))1/2/ v̄)2b/dn, where G(0), v̄, b, and n are all mea-
sured. The fourth row is obtained from the ratio of the second to

third row. The fifth row is obtained from the combination (v̄/Ah)
3$K1/4/@F2Fc

↓(M )#b%. The sixth row is the expected univers
ratio CK determined from the second, the fourth, and the fifth row
note the agreement within error bars of all the columns. The sev
row is determined fromAF5CKKAh , with the M50.0 value for
CK used. The eighth row, the velocity amplitudeAv , is obtained
from the relation (Ah /At)(1/AF

b). The ninth row shows theAv ob-
tained from the best power-law fits of the velocity data of Fig.
Note the agreement within the errors with the eighth row, with
exception of the largestM for which there is a small apparent in
consistency. The tenth row is obtained via Eq.~42! from the integral
of the ratio of the time-dependent velocity-velocity correlatio
*G(t)dt to G(0) for particular choices of the forces close to t
critical force. The eleventh row, the velocity correlation time,tv , is
obtained from the decay constant of exponential fits to the s
G(t) as the tenth row. The twelfth row is the expected univer
ratio Cvv obtained from the previous two rows; note that it is co
sistent with being constant except for the largestM data. The thir-
teenth row is the correlation lengthtv8 obtained from the velocity
autocorrelationsjv85(tv/At)

1/z, with jv taken from the eleventh
row. jv can also be obtained fromG~0! andv̄ via Eq ~40!. This data
is presented in row 14. The fifteenth row is the force amplitu
obtained fromAF'(F2Fc

↓(M ))(j8)v
1/n. The sixteenth row is ob-

tained from the finite-size variations in the critical force shown
Fig. 9, and the seventeenth row is the putative universal ratioCD

inferred from the previous tow rows; note it is consistent with be
constant within the~admittedly large error bars!. In the eighteenth
row, the velocity amplitudeAv is obtained from the fifteenth row
and from the third row.

1 M 0.0 0.2 0.4 0.6

2 Ah 0.98(1) 1.03(1) 1.13(1) 1.23(1)
3 Ah /At 0.39(2) 0.47(4) 0.60(7) 1.0(1)
4 At 2.5(3) 2.2(4) 1.9(6) 1.2(6)
5 1

CK
bAtAh

b
0.51(6) 0.6(1) 0.7(1) 1.0(2)

6 CK ~universal! 0.70(8) 0.69(8) 0.7(1) 0.6(2)
7 AF 0.16(2) 0.17(2) 0.19(4) 0.21(5)
8 Av 1.3(2) 1.53(3) 1.8(6) 3.0(9)
9 Av ~simulation! 1.20(1) 1.49(2) 2.29(2) 4.26(3)
10 Cvvtv 158(5) 146(10) 145(16) 210(20)
11 tv 83(1) 88(2) 94(4) 222(6)
12 Cvv ~universal! 1.90(6) 1.7(1) 1.5(2) 1.1(1)
13 jv8 10(1) 11(2) 13(3) 31(10)
14 jv 14(2) 21(3) 23(4) 42(11)
15 AF 0.11(2) 0.10(2) 0.08(3) 0.08(5)
16 CDAF 0.21(2) 0.22(1) 0.13(1) 0.14(2)
17 CD ~universal! 1.9(1) 2.20(9) 1.6(2) 1.8(4)
18 Av 1.7(2) 2.3(4) 3(1) 5(2)
02160
whichever is smaller. Integrating the associated sca
forms overx and Fourier transforming in time, one finds th
for v@1/t,

Ĝ~v!'CPS

v̄2

v (d1z)/z

jd

Ld

1

jd2z1zAt
(d2z1z)/z

, ~43!

with CPS a universal coefficient.
The log-log plot of the square root of the velocity pow

spectrum@Fig. 10~b!# appears to exhibit power-law behavio
for largev for both the values ofM shown. ForM50, the
observed exponent is close to the expected value ofd
1z)/2z'0.86 over two and a half decades in frequency. F
M50.6, the best fit slope is somewhat larger, but some c
vature is evident and consistency with the dissipative re
is not ruled out. In both of these sets of data, there i
crossover at low frequencies to a flat spectrum. This is m
pronounced in theM50 data which are effectively furthe
from the critical regime—j/L smaller—than theM50.6
data because the two sets of data were taken at app
mately the samev̄ which is closer to the correspondin

v̄min(L,M) for M50.6.
Not only does the value ofFc

↓(M ) provide us useful in-
formation, but its variations do as well. In the finite-siz
limited scaling regime in whichL!j, j is replaced withL in
scaling laws and we expect

$var@Fc
↓~M !#%1/2;L21/n. ~44!

Figure 9 demonstrates this scaling with the system len
the obtained correlation length exponents being 0.7860.02,
for M50 and for M50.6, n50.8160.02. Calculations of
Narayan@23# yield the leading irrelevant eigenvalue at th
quasistatic fixed point as approximately2e/3. This suggests
a fit of the data of Fig. 9 with the form var@Fc

↓(M )#
5CL21/n/(11BnL22/3) yielding n50.7760.03 with Bn

50.7860.01.
We have found that a variety of properties of the stea

state moving phase as well as the variations of the crit
force at which the system stops on decreasing the drive
all consistent with critical behavior that is independent of t
magnitude of the stress overshoots. Given the local hys
esis that is intrinsic with stress overshoots, this universa
is more than a little surprising. In the following section, w
consider to what extent this applies more generally, with p
ticular reference to macroscopic hysteresis.

V. HYSTERESIS

We now turn to an analysis of the hysteretic phenome
that are implied by the coexistence of moving and station
solutions at the same force in the presence of stress o
shoots. A crucial question that we must address is whe
hysteresis persists inmacroscopicsystems that are not pre
pared in special ways. In particular, are there hysteresis lo
with a width that is nonzero in the limit of large systems?
not, as we shall see is the case, how does the hyste
depend on system size? Can one understand this in term
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the purely dissipative dynamics that appear to control
properties of the steady-state moving phase? Or is new p
ics needed?

In Fig. 1~a!, hysteresis loops are shown for typic
samples of size 1282 with f p

max50.5 andM from 0 to 0.6. An
upwards arrow indicates the forceFchyst

↑ , at which the system

starts moving againafter it has been stopped atFc
↓ by a

gradual decrease in the force. ForM50 no hysteresis is
apparent while for positiveM, the differenceFchyst

↑ 2Fc
↓ ap-

FIG. 10. ~a! Time-dependent fluctuations of the instantaneo
spatially averaged velocityv(t) for M50.0,0.2,0.4, and 0.6. For a
data, L5128 and f p

max50.5. Each sample is first equilibrated
some applied force which is then subsequently lowered at a ra
4.231028 ~see text!, until the applied force is such that the stead
state average velocity is approximately 0.04.~b! Log-log plot of the
square root of the velocity power spectrum forM50.0 ~lower plot!
andM50.6 ~upper plot!. The data have been smoothed by aver
ing over groups of five frequencies. The dashed line in both plot
the theoretical expectation in the scaling regime: a slope of2(d
1z)/2z'20.86 forM50. A fit yields a slope of20.8860.01 for
M50. But for M50.6, the slope is rather larger than expecte
21.1260.01.
02160
e
s-

pears to be close toM /45M /Z, the magnitude of the stres
overshoot. On the basis of these data, it would appear
the situation is rather simple: on decreasing the force
steady-state moving phase and the stopping process ar
qualitatively dependent onM, but once the system ha
stopped, an increase of the force byM /Z is required to start
it up again. Once restarted, the velocity rapidly increase
that of the apparently unique moving ‘‘state.’’ The reason
this macroscopic hysteresis would appear to be simple. If
force on each of the segments caused by the last motio
its neighbors before the system stopped was not enoug
cause it to move, then at later times the force will be le
than that needed to make a segment move by at leastM /Z as
the stress overshoots from its neighbors’ jumping will
longer be in effect. If this applies to all of the segments
should be necessary to increase the force back up again
least M /Z before anything can start to move. This wou
imply truly macroscopic hysteresis that is independent
size for large systems.

A more careful examination of both the data and the
gument above shows that it is fallacious: even withf p

max

50.5, a small fraction of samples have substantially n
rower hysteresis loops. There must thus be some segm
that can be restarted by an increase in the force from
stopped state by less thanM /Z. In the following subsection,
we discuss the origin of this effect, but first, we present a
analyze the numerical data.

A. Distributions of F chyst

_

For reasons that will become clear later, we can obt
more useful data on the hysteresis by increasing the stre
of the randomness. Most of our detailed hysteresis data
for f p

max51.0 andM50.8, the latter being sufficiently larg
that the effects of overshoots are strong, but not so large~for
this larger value off p

max) that sublattice effects start to play
role. For these parameter values, the mean force at which
system stops on decreasingF under the procedure discusse
in Sec. IV is

^Fc
↓&'20.0665 ~45!

with the rms variations about this of

Avar@Fc
↓~ f p

max51.0,M50.8!#'0.0006. ~46!

In Fig. 11~a!, the distributions ofFchyst

↑ are shown for vari-

ous system sizes. It can be seen that they are m
broader—by almost two orders of magnitude f
L5128—than the distributions ofFc

↓ . The shapes of the
distributions at first appear rather strange. For the sma
system sizes, a substantial fraction of the weight is in a n
row peak that has similar width to that of the distribution
Fc

↓ , but is shifted up from this by an amountFchyst

↑ 2Fc
↓

'M /Z. In the largest samples, this peak has completely
appeared and we see that the width of the hysteresis loop
narrowed considerably. The narrowing with size of the m
dian width of the hysteresis loops is shown in a log-log p
in Fig. 12. As was evident in the shape of the distributions
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crossover length of aroundL520 is seen in these data. Fo
small sizes the hysteresis loops have width that is typic
close toM /Z. But for the large sizes, the typical width ap
pears to decrease as a power ofL:

median~Fchyst

↑ !2^Fc
↓&;

1

L1/m
~47!

with

m'1.1560.03 ~48!

for M50.8 and

m'1.3560.02 ~49!

FIG. 11. ~a! Probability distribution ofFc
↑ , Prob(Fchyst

↑ ) for M

50.8 andf p
max51.0 for different system sizes.~b! Same as~a! but

with M51.0. The vertical bar on each horizontal axis indica
^Fc

↓&1M /Z.
02160
ly

for M51.0. Note that these exponents are obtained from
narrow range of length scales and crossover behavio
likely to be playing a role; we will return to the issue o
crossovers later. Nevertheless, in spite of uncertainties in
asymptotic size dependence of the hysteresis loops, the o
all trend is clear: in the limit of large systems, thewidth of
the hysteresis loops vanish. This is in spite of the fact tha
there are many linearly stable static configurations that co
ist with the moving state up to the forceFc0 which is sub-
stantially greater thanFchyst

↑ .

Before discussing this result, it is instructive to consid
what happens in the dissipative limit,M50. Although it
might appear that there would be no hysteresis in this c
this is not strictly correct for finite-size systems that ha
been stopped from a moving state. At the force at which
system stops, it gets stuck in a somewhat anomalously st
pinning region~the extent of anomaly depends on the rate
decrease of the force!. Getting it unstuck from such a region
in the sense that all parts of the system move for at le
some distance, can require an increase in the force th
comparable to the width of the distribution ofFc

↓ . Thus we
expect ‘‘hysteresis loops’’ in the dissipative limit to have
width of orderL21/n.

If the systems with stress overshoots behaved like
dissipative case in all universal aspects, one would exp
the asymptotic large system-size dependence of the widt
the hysteresis loops to have the same exponent as the d
pative case, i.e., thatm5n. Up to questions about estimatio
of uncertainties in the presence of complicated crossover
appearsthat this isnot the case: we seem to find

m.n ~50!

corresponding to system-size dependence ofFchyst

↑ being

slower than that ofFc
↓ . If this were indeed the case, w

would expect that it would most likely hold asymptotical
for any M.0. Unfortunately, the range of data is not s
large as to conclusively rule out equality rather than inequ
ity, although ifm5n one would probably need either a larg

s

FIG. 12. Log-log plot of the of the hysteresis loop forM50.8
and M51.0 with f p

max51.0. The slope of the largeL data for M
50.8 is 20.8760.02 with an amplitude of 3.460.2. For theM
51.0 data, the slope is20.7460.01 with an amplitude of 2.9
60.2. We did not include theL516 data points in the linear re
gression as there is a clear crossover at small scales.
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dimensionless amplitude ratio between the coefficients of
size dependence of the two critical forces, or strongly n
monotonic behavior; we will later explore such scenari
But for now we focus on the scaling behavior that seems
be emerging for system sizes larger than of order 20 or so
f p

max51.0,M50.8.
It appears that the larger system sizesdo exhibit scaling

behavior of thedistributions, a more stringent test than ex
ponents. Indeed, the size dependence of the distributions
vides a useful way to understand the causes of the size
pendence of the hysteresis.

Let us assume that restarting on increasing the force a
stopping occurs via some kind of nucleation process wh
occurrence is dominated by scales that are much smaller
the system size. Then we expect a density of nuclea
segments—or ‘‘seeds’’—with a distribution of values of th
local critical forcesFs needed to restart. If this distributio
extends down toFc

↓ , larger systems are more likely tha
smaller ones to have a seed with a smallFs . As the lowest
Fs in a given stopped configuration will be the one that d
terminesFchyst

↑ , this will yield a distribution of critical forces

that becomes squeezed down toFc
↓ asL→`. A simple check

on the assumption of locality of the seeds is accomplished
estimating the distribution ofFchyst

↑ for a sample of sizeL, by

considering it as being made ofbd independentsamples of
size L/b whoseFc

↓s are drawn independently from theob-
serveddistribution for these smaller size samples. In Fi
13~a! and 13~b!, this is carried out forL5128 andb52,4,
and 8. As can be seen, the distributions obtained agree
well with those measured for theL5128 samples directly
This agreement is particularly striking given that the data
Fchyst

↑ for L516 in Figs. 11~a! and 11~b! have a very different

form than those for the large samples.~This difference in
form for the distributions is the source of the crossover
served in the size dependence of the width of the hyster
loop.!

The agreement of the actual distribution ofFchyst

↑ for L

5128 with that obtained from the distribution withL516
suggests that the nucleation process in a sample of size
is typically dominated by regions whose diameter is less t
16. Once such a small nucleation region gets going, it w
typically expand to make the whole system restart, indep
dent of the existence or lack thereof of seeds in other regi
or of other stochastic properties of the rest of the syst
Before analyzing the consequences of this, we must cau
that a crucial question is whether such a relation between
distributions ofFchyst

↑ for systems of sizeL andL/b holds, in

the limit of largeL, for only a limited range ofb, for any
b!L, or for b up to some~subdominant! power ofL.

For now, we will extract the shape of the distribution fro
the observation that there is at least a substantial rangeb
over which the relationship between the distributions
Fchyst

↑ for sizeL and sizeL/b does hold.

The basic picture of the restarting being controlled by
least pinned of many independent seeds enables one to r
the size dependence of the medianFchyst

↑ to the form of the
02160
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distribution. Picking the minimum of theFchyst

↑ ’s from S

5bd subsystems, each of which has a distribution ofFchyst

↑

that vanishes as (Fchyst

↑ 2^Fc
↓&)dm21 for small Fchyst

↑ 2^Fc
↓&,

yields a power-law decrease withL of the width of the dis-
tribution, and, indeed, the actualform of the distribution. We
expect a Weibull distribution with one nonuniversal sca
parameterf h , @24#.

Prob@dFchyst

↑ #'dFchyst

↑ dm

f h
S Fchyst

↑ 2Fc
↓

f h
D dm21

3expF2S Fchyst

↑ 2Fc
↓

f h
D dmG . ~51!

FIG. 13. ~a! Distributions, Prob(Fchyst

↑ ), for M50.8, f p
max51.0,

andL5128 inferred from data for smaller sizes. TheL5128 curve
is the same as in Fig. 11 while the other distributions are obtai
from theL564, 32, and 16 data from Fig. 11 rescaled as descri
in the text.~b! Same as~a! except withM51.0.
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As can be seen in Fig. 14, this yields a rather good fit to
data forL5128 with the value ofm extracted from the size
dependence of the median. If, instead, we do a best fit to
shape of the distribution for the largest size, we find,m
'1.08 forM50.8 and forM51.0,f p

max51.0, m'1.25. Note
that these values are slightly smaller than those obta
from the size dependence and thus somewhat closer tn;
this may well be a sign of slow crossover to asympto
behavior that is like the dissipative limit.

B. Origins of seeds for restarting

We next develop an understanding of the origins of
unusual hysteretic behavior that was found in the numer
studies: in particular, the origins of the seeds for nucleat
of motion when the force is increased back up again after
motion has stopped. To do this, we need to understand
the manifold stops moving asF is decreased toFc

↓(M ) as it
is this that sets up the configurations in which the seeds e
We first analyze the basic role of the stress overshoots in
steady-state moving phase.

A very crude approximation to the effects of the stre
overshoots is to ignore their local nature. We thus cons
an artificial model in which ifanysegment has moved on th
previous time step, the force onall the segments is increase
by M /Z above what it would be with purely dissipative d
namics. As long as something is always moving, this is id
tical to merely increasing the applied force byM /Z. But
once the system has stopped—because of a decrease
applied force or because of running into a strongly pinn
region—no segment can move again until the force is
creased byM /Z; this is because any segment that cou

FIG. 14. Left plot shows distribution ofFchyst

↑ with dark solid
line a Weibull distribution, Eq.~51!, with scale parameter of 0.04
andm51.15 obtained from Fig. 12, and dashed line a best fit to
Weibull form with two fitting parameters. The light solid line is th
data forM50.8, L5128, andf p

max51.0. The right plot is, similarly,
M51.0 ~sameL and f p

max) with the scale parameter for the sol
line Weibull distribution 0.078 withm51.35 from Fig. 12, and the
dashed line the best fit Weibull distribution.
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move with less of an increase inF, should,a fortiori have
moved already because of the stress overshoot that
present before the motion stopped. In terms of the distri
tion of the total force$ f (x)% on a segment, which must b
positive for it to jump, the stopped configuration will have
depletion layer: no segments withf (x) in the interval
(2M /Z,0) @and of course none withf (x).0]. The behavior
of this crude model is thus very simple: thev(F) curve is
shifted down~in F) by M /Z, the steadily moving states ar
identical to those atM50 with F→F1M /Z. When the
force is increased after stopping, no motion will occur un
the depletion layer disappears, thereforeFchyst

↑ 5Fc
↓1M /Z

for each sample.
Before we return to the model of primary interest, it

worth noting that a model that is much less pathological th
the crude model discussed above, nevertheless, has mu
the same behavior. Thisnonadditive stress overshoot mod
has nearest neighbor stress overshoots that last for one
step and a ‘‘self-overshoot’’~analogous to inertia! that like-
wise lasts for one time step. But the stress overshoots
nonadditive so that any site has a stress overshoot th
either zero orM /Z. For example, if two nearest neighbors
a segment jump, that segment feels a stress overshoo
M /Z, in contrast to the 2M /Z overshoot it would feel in our
primary model. The partial equivalence between this non
ditive stress overshoot model and the crude model can
easily understood. If the total force on a segment does
change from the previous time step, it cannot jump at
next time step. Thereforechangesin the total force on a
segment are what determines whether a segment jump
not at the next time step. At fixedF, changes in the tota
force on a segment arise from nearest neighbors jumpin
the previous time step and from the segment itself jumping
the previous time step. In the nonadditive model, each
these will involve an extraM /Z stress. Thus as long as mo
tion has existed somewhere in the systems for more than
time step, given a configuration of the crude model a
which segments have jumped on the previous time s
there is an exactly equivalent configuration of the nonad
tive model which will have the same dynamics at all futu
times as long asF remains fixed. But the dynamics arenot
fully equivalent: when the first segment moves in the cru
model, it can trigger others far away; this cannot happen
the nonadditive model. Nevertheless, the steady-state ve
ity as a function of force will be the same in these tw
models, with the critical force in the infinite system lim
shifted down by exactlyM /Z from the dissipative case. Th
hysteresis loops will also be similar, but not identical: in bo
cases there will be a depletion layer of widthM /Z after the
system has stopped and the force will have to be increa
by this for motion to start again. But in finite-size sampl
the behavior will be slightly different as it is much mor
likely in the nonadditive model that motion could start in o
region but die out: the actual critical force for restartin
would then be slightly higher. The dynamics of the transie
motion on restarting would also differ due to the locality
the nonadditive model.

e
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The decrease ofFc
↓ with M in the crude and nonadditiv

models is the underlying cause for the linear decrease
Fc

↓(M ) in the primary model. As long as segments on
move in response to their neighbors’ moving, what is cruc
in determiningFc

↓ is how the system gets through potent
sticking points. Some of these are likely to involve only o
neighbor of a segment moving at the previous time step
they do, then the critical force at which they can proce
will, in the absence of other changes of the dynamics du
M, be justM /Z lower than it would be withM50. In the
limit of small M, we expect that the sequence of jumps aF
will be very close to that atF1M /Z in the absence of over
shoots.

The nonlinear part of the dependence ofFc
↓ on M is of a

different origin. AsM grows, the equivalence between th
sequences of jumps at different values ofM no longer re-
mains because of, for example, the effects of two neighb
jumping at the same time which increases the stress o
segment by 2M /Z. This will tend to make stopping les
likely as a region can be restarted by motion in other regi
that is caused by such multiple-neighbor jumps. As o
would thus expect,Fc

↓ decreasesfaster than linearly asM is
increased.

The focus on particular sites and whether they can
retriggered by a given increase inF is also useful for under-
standing the hysteresis in the model of primary interest
crucial question about the local dynamics is: How close
a segment be to movingwithout one of its neighbors having
moved on the previous time step? We must consider the m
recent time in the past, say time one, at which a neighbo
the segmentx of interest moved. For simplicity, let us as
sume that none of the neighbors moved at time zero. At t
zero, the total force onx is then

f ~x,t50!5F2 f p~0!1s~0!,0, ~52!

with s(0)5s(x,0) andf p(0)5 f p„x(0),h@x(0)#… the initial
elastic force and initial pinning strength, respectively, atx. If
n out of theZ neighbors jump at time one,

f ~x,1!5F2 f p~0!1s~0!1n~11M !/Z. ~53!

If this is negative, thenx will not move and, at later times
the forcef (x,t.1),2nM/Z as the stress overshoot will n
longer apply; thus segmentx will not be in the depletion
layer. If, however,x does jump at time two in response to i
neighbors’ jumping, i.e., iff (x,1).0, then the total force on
it at later times will be

f ~x,2!5F2 f p~1!1s~0!211n/Z ~54!

with a new random pinning forcef p(1). As long as f (x,2)
,0, this segment will not move further unless one of
neighbors does. Thus this represents a possible local con
ration when the system has just stopped.

The conditionf (x,0),0 implies, from Eq.~52! and Eq.
~53! that f (x,1),n(11M )/Z. The maximum off (x,2) is
then obtained whenf p(1) is minimal ~i.e., zero! and f p(0)
maximal ~i.e., f p

max); this yields f (x,2), f p
max211n/Z. If the
02160
of

l
l

if
d
to

rs
a

s
e

e

A
n

st
of

e

u-

force is now increased back up byDF so that f (x,2)1DF
50, the segmentx will jump and could trigger restarting o
the overall motion. We must thus ask how close to ze
f (x,2) can be.

If the last motion in any region were always via sing
neighbors triggering each other, then there would be a de
tion layer on stopping and macroscopic hysteresis forf p

max

,121/Z5 3
4 in our case with coordination numberZ54.

@This would occur if the stress overshoots were not addit
but instead such that any number of neighbors jump
yielded the same value of the stress overshoot as only
had.# But in reality, it is possible that any number of neig
boring segment on a segment could jump at one time
then not again. Some results on the simultaneous hoppin
a number of neighbors are presented in Table II. As such
of simultaneous jumps can occur for anyn<Z—including
for n5Z—even as the system is stopping, there will beno
depletion layereven for arbitrarily weak randomness and
hysteresis in the infinite system limit. Nevertheless, for we
pinning, the depletion layer will only be filled by simulta
neous jumps of multiple neighbors followed by a jump of t
central segment that does not trigger further jumps of any
its neighbors. Although we expect that a local condition su
as this will always occur for some finite fraction of the se
ments, it appears likely that the potential seeds for restar
with small increases inF will be very rare for weak pinning;
this, indeed, turns out to be the case. It is the proximate ca
of the long crossover lengths apparent in the size-depen
distributions ofFchyst

↑ .

The above analysis gives a qualitative explanation for
lack of macroscopic hysteresis. But to explain the obser
dependence of the widths of the hysteresis loops on sys
size, we must understand the density of states of segm
with small negative total force on them in the stopped co
figurations, and what happens after motion is triggered
one of these seeds as the force is increased. Quite gene
the continuous nature of the distributions of yield streng
and the discrete nature of the stress transfer means tha
density of states for local properties should either be zero
be strictly positive. Specifically, from the above we expe
that the density of states of the local forces will be positive

TABLE II. The probability of n50,1,2,3, or 4 of the neares
neighbors of a segment having jumped at the previous time s
given that the segment jumps. Forn50, there are large fluctuation
so we record a range of values. The size isL5128 and average
velocity approximately 0.1.

f p
max M 0 ~range! 1 2 3 4

0.5 0.0 (0.0005,0.002) 0.55 0.30 0.10 0.05
0.5 0.2 (0.0,0.001) 0.45 0.35 0.15 0.05
0.5 0.4 (0.0,0.001) 0.30 0.35 0.25 0.10
0.5 0.6 (0.0,0.001) 0.20 0.30 0.30 0.20
0.5 0.8 (0.0,0.00025) 0.10 0.20 0.30 0.40
1.0 0.2 (0.01,0.02) 0.45 0.35 0.15 0.05
1.0 0.8 (0.002,0.008) 0.20 0.30 0.30 0.20
1.5 0.2 (0.05,0.06) 0.50 0.30 0.10 0.02
3-18
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DEPINNING WITH DYNAMIC STRESS OVERSHOOTS: . . . PHYSICAL REVIEW E 67, 021603 ~2003!
zero in the stopped state. To check this, we have comp
the probability density per site,r (F), that some motion is
triggered with a small increase inF to F1dF in stopped
systems; this is normalized so as to include only th
samples that have not yet restarted macroscopically~al-
though they might have already had some transient lo
motion!. This rate of triggering of jumps appears to go to
constant asF decreases toFc

↓ and exhibits relatively weak
dependence onF as the force is increased; we will prese
the data later in the paper.

From the data for the distribution ofFchyst

↑ , which ap-

proximately linearly atFc
↓ , a constant density of states fo

triggering motion is perhaps surprising. The reason for t
must lie not in the seeds themselves, but in how they gr
In particular, very close toFc

↓ local triggering must be les
likely to induce restarting than it does at higher forces.
order to understand this, it is necessary to investigate
avalanche dynamics, i.e., the transient motion in response
triggering of one segment. Before considering this in
context of the hysteresis loops and restarting, we ana
avalanches that occur in the approach to depinning from
low.

VI. AVALANCHE DYNAMICS

In the preceding section we have seen that to unders
the hysteretic phenomena observed on cycling the force
and down, we need to understand how macroscopic mo
starts once it has been triggered by a local instability t
leads to one segment jumping. Before studying the cas
interest for hysteresis loops, which involves initial conditio
that are set by the stopping process, we analyze the beh
as the force is slowly increased from far below the depinn
transition starting from more generic initial conditions. W
will call this initial depinning. In particular, we are intereste
in the behavior as the depinning transition is approac
from below.

Even though there is no steady-state motion in this
gime, there can be local, transient motion in response
small increases inF. Suchavalancheswill not persist indefi-
nitely for smallF because the pinning forces in other regio
will eventually dominate as long asF,Fcaval

↑ (M ), the—

possibly history dependent—critical force on increasingF.
In this section we investigate the dynamics that res

when F is increased adiabatically: initially by just enoug
that one segment moves. This can then trigger other
ments to hop forward, whileF is held fixed until the ava-
lanche stops. The same procedure is then repeated unF
5Fcaval

↑ . For an infinite system, this is defined as the for

above which the motion persists indefinitely in the abse
of any further increase. In finite systems, there are so
ambiguities in how it is defined; we choose to define it as
lowest force at which all of the segments move during
single avalanche. The primary quantities of interest be
the depinning are the sequence of avalanches and their
tistical properties: numbers, sizes, durations, etc. More m
roscopic quantities, such as macroscopic responses to a
but noninfinitesimal increase inF can be determined by in
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tegrating over the properties of the avalanches.
There are various measures of the size of an avalan

Three of these will be of particular interest. Themoment, m,
of an avalanche is defined as the total motion that occur

m5(
x

@h~x!after2h~x!before#; ~55!

this is the quantity of primary interest for earthquakes. Alt
natively, one can consider thearea, a ~in the two-
dimensional case of interest!: the total number of segment
that move at least once during the avalanche. Lastly, is
linear sizel of an avalanche, one measure of which is
diameterdefined, for example, either via some weighted s
of distances of moving segments from its center, or as
diameter of the smallest circle that will enclose the av
lanche.

A. Scaling

For the purely dissipative case,M50, the scaling of the
avalanches is related to that of the various quantities—h, x,
F2Fcaval

↑ , and t—discussed in the context of the movin

phase. In particular, if an avalanche has a diameterl , its
area will scale asl df , its duration asl z, the typical maxi-
mum displacement—change inh—asl z, and its moment as

m;l df1z. ~56!

As long as the dimension is less than the upper critical
mension,dc54 for short-range interactions, the avalanch
will not be fractal and hence@7#

df5d ~57!

so that the area is a good surrogate, which we will use,
the length scale of an avalanche:

l ;a1/d. ~58!

Well below the depinning transition, most avalanches
small. But as the transition is approached from below, lar
ones become possible, although the distribution of their
ameters is cut off by a correlation lengthj that, in the dissi-
pative limit, diverges atFc0 as

j;
1

~Fcaval

↑ 2F !n
~59!

with the same exponentn as determined by the scaling of th
physically different characteristic length in the movin
phase, the velocity correlation length. At the critical point
the dissipative limit, the distribution of avalanche sizes is
power law:

Prob@diameter.l #;
1

l k
~60!

and a similar relation applies for other measures of size;
example, for the area, the exponent is simply changed
3-19
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J. M. SCHWARZ AND DANIEL S. FISHER PHYSICAL REVIEW E67, 021603 ~2003!
k/d. Near the critical force, the distribution of the areas
large avalanches has the scaling form

Prob@da#5p~a;F !da;
1

ak/d
P~a/jd!

da

a
, ~61!

wherep(a,F)da is thefraction of the avalanches that occu
within a small force interval aroundF, whose area is be
tweena and a1da @7#. The scaling functionP(y→`) de-
cays rapidly while fory→0, it goes to a constant.

The statistical ‘‘tilt’’ symmetry of the system that wa
used earlier to yield the scaling law, 1/n522z, can also be
used, via relating the polarizability to the avalanche prod
tion rate and the distribution of their sizes, to show that
M50,

k5d2
1

n
5d221z, ~62!

as derived in Ref.@7#. The one crucial assumption is that th
rater (F) of avalanche production, defined as 1/DF times the
number of avalanches per unit area of the system as the f
is increased by a small amount fromF to F1DF, tends to a
finite nonzero constant at the critical force.

We now turn to an analysis of the data for avalanc
statistics and properties of the avalanches: for the diss
tionless limit, to check the theoretical predictions outlin
above; and for nonzeroM, to investigate the effects of stres
overshoots.

An easy quantity to measure is thecumulative distribution
of all the avalanches as the applied force is increased
Fcaval

↑ (M ). This is given by

pcum~a!da[E
2`

Fcaval

↑
dFp~a;F !r ~F !

da

a
;

1

aKcum
da.

~63!

Assuming thatr (F) approaches a constant asF→Fcaval

↑ , the

scaling laws for the dissipationless case yield a power-
cumulative avalanche area distribution with an exponen
unity,

Kcum~M50!51, ~64!

independentof the values of the other exponents. This th
provides a good test of the general scaling theory that d
not depend on particular predictions for exponents. Althou
we do not expect the universal aspects of the avalanche
tistics to depend on details of the initial conditions, to avo
effects that might arise from smoothening out rough init
conditions, we take the initial configuration to be appro
mately flat: specifically, the initial$h(x)% uniformly distrib-
uted in the interval@0,1#.

B. Dissipative limit

We first analyze the data forM50.0. In Fig. 15~a!, the
cumulative avalanche area statistics are shown; a fit to
data on a log-log plot yields an exponent somewhat less
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the theoretical expectation ofKcum51. If we restrict consid-
eration to those avalanches that occur in the region clos
the critical force in which most of the activity occurs, sp
cifically, within the applied force region of@Fcaval

↑

20.1,Fcaval

↑ #, the apparent exponent is roughly the sam

Kcum50.8560.03 as shown in Fig. 15~a!. Before trying to
understand the apparent discrepancy of this with the sca
prediction, we consider the statistics of avalanches that oc
in the critical regime, specifically, only those that occur fo
F.^Fc

↓(M )&. The distribution of these also decays as
power of the area, as shown in Fig. 15~b!. But the power is
much smaller: 0.3760.02. Because the correlation leng
that would cut off the avalanche distribution is of the ord
of the system size in this regime, the distribution shou

FIG. 15. ~a! Log-log plot of the probability of avalanche areaa
occurring within the interval@a/A2,A2a) as F is increased to
Fcaval

↑ (M ) for f p
max50.5. The circles are forM50.0, squares for

M50.2, triangles forM50.4, and inverted triangles forM50.6.
The open symbols representL5128 data, while the closed symbo
representL564. The asymptotic slope should be2Kcum/d; fits
yield: for M50.0, 20.8960.02; for M50.2, 21.1360.02; for
M50.4, 21.2560.01; and forM50.6, 21.5360.02. The dashed
curve is the result of a two-parameter fit to theM50 data:
Ca21(11Bcuma21/3) with Bcum521.2160.11; with Kcum also a
fitting parameter:Ca2Kcum(11Bcuma21/3), these data yieldKcum

50.8360.02 andBcum50.5360.01. ~b! Same as in~a!, but includ-
ing only the avalanches that were initiated with an applied fo
greater thanFc

↓(M )—well within the critical regime. The expecte
slope is 2k/d; for M50.0, a best fit yields20.3760.02. For
nonzeroM, large crossover effects are evident. The areaa is mea-
sured in units of the lattice constant squared.
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DEPINNING WITH DYNAMIC STRESS OVERSHOOTS: . . . PHYSICAL REVIEW E 67, 021603 ~2003!
essentially be that of critical avalanches with an expon
k/d. We thus obtain an estimate

k~M50!'0.7460.04 ~65!

to be compared with the theoretical expectation ofk5d
221z5d21/n equal toz in two dimensions. We see tha
the agreement with our data forz is quite good@z(M50)
50.7260.02 as the manifold comes to a stop from the mo
ing phase#, suggesting that the basic scaling scenario is c
rect.

There are various possible sources for the substantial
crepancy of the apparent cumulative exponent from unity.
can be seen in Figs. 15~a,b!, the rate,r (F) of avalanche
production forM50 increases sharply as the critical force
approached. Although it does appear to go to a finite c
stant, as it should on general grounds sincer (F) is a locally
determined property, the precursor increase will bias the
mulative statistics as there are more avalanches prod
near the critical point than further away, and these are
ones that have possibilities of being large. This will tend
put more weight in the large avalanche part of the cumula
distribution, thereby decreasing the apparentKcum. @The ex-
treme limit of this weighting of those near the critical forc
would just yield the critical exponentk/d instead, as in Fig.
15~b!.# In particular, if there is a cusp singularity in the ra
of avalanche production asF→Fcaval

↑ with an exponenta,

then this would induce a multiplicative correction to the c
mulative avalanche size distribution of the form
2C/a(a/dn) which could complicate interpretation of data.

In general, we expect there to be corrections to sca
arising from weakly irrelevant operators at the RG fix
point that governs the depinning critical behavior. In terms
areas, the leading irrelevant eigenvalue2u'(42d)/3 @23#
would give corrections of the forma2Kcum(11Ba2u/d) with
u/d' 1

3 in two dimensions. Such corrections would domina
over those from a cusp in the avalanche production rate
lessa,0.5. Indeed, the simplest expectation is that the c
in the avalanche production rate is controlled by exactly t
correction exponent,

r ~F !'r ~Fc0!2Cr~Fc02F !u n, ~66!

corresponding toa'0.5. A fit to this form withr (Fc0) and
Fc0 fixed, andCr and u n as the free parameters, yields
lower value ofa. If we take into account a correction t
scaling by fitting the log-log plot of the cumulative av
lanche area distribution with a form that includes the lead
correction@shown in Fig. 15~a!#, the cumulative avalanch
size exponent is changed from 0.8960.02 to 0.8360.02, i.e.,
in the wrong direction. But if the data are fit with the e
pectedKcum51 and ana21/3 correction,—a fit with the same
number of parameters as an undetermined power law with
correction—the inferred correction to scaling amplitude
B'21.260.1, not unreasonably large. If this were the a
tual form of the distribution, some downward curvature
the largest sizes would be expected as seen in the da
fitting line in Fig. 15~a!. A competing tendency, however,
the flattening of the distribution at areas of the order of
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total system area; this is evident in Fig. 15~a! in which data
for L564 andL5128 are shown. These effects combine
make the real uncertainties in the exponents here, and p
ably for other quantities, substantially larger than the app
ent uncertainties.

Note, however, that the useful range of length sca
available for avalanche data and other quantities for wh
one is trying to extract infinite system results from fini
system data are, because of the crossover when the le
scales approach the system size, less than is available
quantities, such as the variance of the critical forces, that

FIG. 16. ~a! For initial depinning, log-log plot of the probability
of an avalanche areaa occurring in the interval@a/A2,A2a) asF is
increased toFcaval

↑ (M ) for f p
max51.0 andL5128. The open circles

are forM50.0, the open triangles denoteM50.4, the stars repre
sentM50.8, and theM51.0 data are denoted byx’s. The fitted
slope forM50.0 is 20.9060.01; for M50.4, 21.0260.02; for
M50.8, 21.0860.02; and forM51.0, 21.1460.02. The dashed
curve is a fit to theM50 data that includes corrections to scaling
in Fig. 15~a!; yields a correction to scaling coefficient ofBcum5
20.9760.01. ~b! Same as~a!, but including only the avalanche
that were initiated with an applied force greater thanFc

↓(M ), in the
critical region. Comparisons with data taken on stopped sam
~starting withF.Fc

↓ and loweringF until the manifold stops before
increasing again!. For the initial depinning, the same symbols as
~a! are used. For the stopped samples, the right triangles are
M50.8 and the left triangles forM51.0. ForM50, the slope is
expected to be2k/d52z/d'2

1
3 , a fit yields20.3960.02. For

M.0, the data do not fit this and crossover effects are evident.
comparison, dashed lines are shown with a slope of20.9, which
corresponds to the measuredcumulativeavalanche area exponen
Kcum for the M50.0 case. The areaa is measured in units of the
lattice constant squared.
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intrinsic properties of finite-size systems. Thus we mig
hope to have more confidence in exponent estimates
tracted from such intrinsic finite-size properties. In Fig
16~a! and 16~b! we plot the same as in Figs. 15~a! and 15~b!
but with f p

max51.0 for comparison.

1. Durations, moments, and roughness

From the avalanche data, specifically for thedurationsof
avalanches, one can determine the dynamic exponentz: with
nonfractal avalanches, the durationt will scale asaz/d. In
Fig. 17~a! we plot the mean duration of avalanches who
area is within a factor ofA2 of a as function ofa. The slope
of the log-log plot yields

z~M50!'1.4060.02. ~67!

As for the avalanche statistics, we can attempt to take
account corrections to scaling by fitting to the form^t(a)&
'Caz/2/11Bza

21/3. This three parameter fit yieldsz51.52
60.02 andBz520.5860.05; this value ofz is closer to the

FIG. 17. ~a! Log-log plot for the mean duration of avalanch
whose area is in the interval@a/A2,A2a). All data are for f p

max

50.5, L5128. TheM.0 curves have been shifted along vertic
axis for clarity by multiplying by successive factors of 3/2. Th
asymptotic slopes should bez/d. Linear fits for bothM50.0 and
M50.2 ~not shown! yield z51.4060.02. The dashed line is a non
linear fit that includes corrections to scaling; forM50.0 it yields
z51.5260.02 with correction amplitudeBz520.5860.05; see
text. Linear fits for theM50.4, M50.6, M50.8, andM51.0 data
yield values ofz/2 of 0.6960.02, 0.7060.03, 0.6960.01, and
0.6860.02, respectively.~b! Log-log plot for themedianduration
avalanches with area in the interval@a/A2,A2a).-
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value of 14
9 from a naive extrapolation of the 42e expan-

sion, althoughz is likely to have higher-order corrections i
e even if z does not. Reference@19# shows thatz522 2

9 e
20.043 21e2'1.38. Thez extracted from the avalanche dy
namics agrees quite well with this value without any corre
tions to scaling.

The roughness exponentz can be extracted from themo-
ment as a function of the area:m;a(d1z)/d. Factor of 2
logarithmically binned histograms are shown in Fig. 18; f
the dissipative case these appear to yield a rather small v
of

zaval~M50!'0.4460.02. ~68!

However, there is definitely upward curvature observable
the larger sizes and a fit withz5 2

3 and ana21/3 correction to
scaling~same number of parameters! is somewhat better and
yields a correction to scaling amplitude of order unity, mo
precisely20.91. Note, however, that, as for the distributio
of avalanche sizes, such fits suffer from finite-size effects

A roughness exponent can be more directly extrac
from the statistics of the roughness of the manifold exactly
the critical force,Fcaval

↑ . In Figs. 19~a,b!, fits to the spatial

power spectrum,̂uĥ(k)u2&, yield z(M50)'0.6560.02 and
0.6960.02 for f p

max50.5 andf p
max51.0, respectively. These

values are close to those observed for systems that h
stopped after a decrease ofF from the moving phase.

The apparent discrepancy between the scaling of the t
cal displacement of avalanches and the roughness at the
cal point is somewhat troubling, although, as we have see
can readily be accounted for by corrections to scaling. T
sort of discrepancy has been seen previously in simulat
of manifold depinning@25#. In that case, the roughness e
ponent at the critical force was similar to ours, but the d
placement of the avalanches scaled with alarger exponent.
The fact that the discrepancy can be in either direction s

FIG. 18. Log-log plot of the mean moment of avalanches w
area in the interval@a/A2,A2a) for L5128 and f p

max50.5 using
same symbols as in Fig. 15~a!. The expected slope is (d1z)/d. A
linear fit ~solid line! for M50.0 yields 1.22620.02. For otherM,
the same exponent fits to within one standard deviation. The da
line is a fit including corrections to scaling:Ca(z1d)/2(1
1Aza

21/3) with C and Bz520.9160.02 fitting parameters. The
areaa is measured in units of the lattice constant squared.
3-22
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ports the belief that it is due to corrections to scaling rat
than a difference between the two exponents, as had b
conjectured in Ref.@25#.

As was done for the critical force defined from the mo
ing phase, we can also extract thecorrelation length expo-
nentfrom the finite-size scaling of the variance of the critic
force. In Fig. 20, the data are shown and exponent estim
of 1/n(M50)'1.2260.04 and 1.2860.02 extracted from
the data for, respectively,f p

max50.5 and f p
max51.0. These

yield

FIG. 19. ~a! Log-log plot of the square root of the power spe
trum contrasting the system just below the critical force on ini
depinning,Fcaval

↑ ~open symbols!; with its behavior when it has ‘‘just
started’’: immediately after every segment has moved durin
single avalanche event atFcaval

↑ ~solid symbols!. Each set of data
represents an average over 1000 samples, and the curves have
shifted along the vertical axis for clarity. The stars andx’s denote
f p

max51.0, the other dataf p
max50.5. For the data just belowFcaval

↑ ,
the fitted roughness exponents,z, are indicated by the uppermos
solid lines: with f p

max50.5 (0.7160.05 for M50.0, 0.5560.04 for
M50.2, and 0.0260.02 forM50.6); with f p

max51 (0.5760.04 for
M50.8). The lower solid curves are fits with corrections to scal
of the formc1k2(112/3)(11Bzk

2/3), with fitting parametersc1 and
Bz520.00660.002 for M50.0, 0.03460.007 for M50.2, and
0.28360.009 for M50.8. For the just started data, withf p

max

50.5, inferredz ’s are 0.6560.02 for M50.0, 0.6560.02 for M
50.2, and 0.6960.02 forM50.5 ~not shown!; and 0.7260.03 for
f p

max51.0, M50.8. No fit was attempted forM50.6, f p
max50.5.

The error bars are achieved in the same way as described in
7~a!. ~b! Same as~a!, but for comparison of amplitudes: the curve
have not been shifted and a narrower range ofuku is shown.k is in
units of the inverse of the lattice constant.
02160
r
en

l
es

n~M50!'0.8260.04 ~69!

for f p
max50.5 andn(M50)50.7860.02 for the stronger pin-

ning. The scaling lawz11/n52 is consistent with the in-
ferred exponents at the level of a few times the appar
error bars.

In spite of the discrepancies noted above for the typi
displacement of avalanches and their cumulative statis
overall the data for avalanches in the dissipative limit app
to be consistent with those obtained from the moving ph
and with theoretical predictions. In particular, if one includ
corrections to scaling of the anticipated form, all the data
consistent.

C. Avalanches with stress overshoots

We now turn to avalanche properties forM.0. Because
the distribution of avalanche sizes will turn out to raise t
most questions, we first study the duration versus area
moment versus area.

1. Durations and moments

In Fig. 17, the mean and mediandurationsof avalanches
whose area is within a factor ofA2 of a are plotted for
variousM. Except possibly at the largest sizes, the data lo
remarkably similar to the data forM50 and an exponent o
z'1.4 would be inferred from each. In Fig. 18 the me
momentsare plotted; again there seems to be remarka
little dependence onM. For both the duration and the mo
ment data, not only do theexponentslook similar to those at
M50, but the amplitudesdo also. Given the relatively
strong dependence of the velocity amplitude onM ~Sec. IV!,
this is particularly surprising.

An amplitude that would be expected to be proportion
to the time-length scaling factor,At , can be extracted from
the mean duration of avalanches as a function of their a
Although these would be expected to differ by an unkno

l

a

een

ig.

FIG. 20. Log-log plot of the rms variations ofFcaval

↑ (M ) as a

function of the system lengthL. Filled symbols denotef p
max50.5

and open symbolsf p
max51.0. The stars representM50.8, f p

max

51.0. Other symbols are as in previous figures. The slopes of
two M50.0 curves are21.2260.04 ~filled! and 21.2860.02
~open!, shown by solid lines. ForM.0, crossover is evident and
the dotted lines are merely guides for eye.
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numerical factor from those extracted from measurement
the moving phase, the ratios might have been expected t
universal. The amplitudeAt

aval'1.33 for M,0.4 andAt
aval

'1.44 forM50.6,f p
max50.5. It is apparent that these amp

tudes exhibit substantially less dependence on param
than do theAt inferred from the moving phase. This less
dependence is also observed in the time evolution of
average avalanche moment~Fig. 21!. Although at first this
seems troubling, it should, perhaps, not be: even in the
sence of overshoots, the properties of avalanches can de
on how the system is prepared. Nevertheless, the differe
here are probably related to some of the more puzzling
ferences that occur in distributions of avalanche areas
distributions of critical forces; these we discuss further
low.

2. Distributions of avalanche area

In contrast to the properties of avalanches of a given a
thedistributionsof avalanche sizes depend strongly onM. In
Figs. 15~a! and 16 the cumulative distributions of all av
lanches are shown forf p

max50.5 andf p
max51.0, respectively:

the data are straight on a log-log plot over a substantial ra
of areas but the slope appears to vary continuously withM,
for f p

max50.5 from 0.8960.02 for M50 to 1.5360.02 for
M50.6 and for f p

max51.0, from 0.9060.01 for M50 to
1.1460.02 forM51.0. At large areas, of order 10% or so
the system area, the distributions of avalanches fall off
creasingly more rapidly asM increases. Whether this is a
intrinsic effect or a finite-size effect is an important issue
understand.

Data taken for stronger pinning,f p
max51.0, are shown in

Fig. 16~a!. Surprisingly, these cumulative data depend
less onM over the range shown. Although the apparent
ponent varies slightly, all are probably consistent withKcum

FIG. 21. Log-log plot of the time evolution of the average m
ment of avalanches initiated betweenFc

↓(M ) andFcaval

↑ (M ) ~within
a small force interval!. The normalization factor is the number o
avalanches that are still moving at timet. The light solid line dis-
placed slightly below theM50.0 curve is the result of a leas
squares fit to a power law whose exponent yields an exponen
1.6360.01 in the scaling regime. In the quasistatic scaling regim
the exponent should be (z1d)/z. For all data,L5128. For clarity,
^Moment(t)& for M50.2 has been multiplied by 2; forM50.6, the
multiplicative factor is 4, and for theM50.8 data, it is 6.
02160
in
be

ers

e

b-
end
es
f-
nd
-

a,

ge

-

r
-

51 with corrections to scaling. More strikingly, there is n
dropoff seen for large sizes even withM51.0.

The dependence of the avalanche distributions on st
overshoot is more marked if we restrict consideration to a
lanches that occur for forcesabove Fc

↓ , Figs. 15~b! and
16~b!. As mentioned earlier, forM50 these yield an expo
nent, expected to be equal tok/d5z/2, of 0.3860.03. But
asM increases the distributions appear to follow roughly t
dissipative behavior for small avalanches only to fall su
stantially below it for large ones. This difference is mo
pronounced for largeM: the largest avalanches are about
order of magnitude rarer forM50.4 than forM50 for the
weaker pinning and similarly forM51.0 versusM50 for
the stronger pinning. In contrast to the data for the cumu
tive numbers of avalanches, these data are suggestive of
cal crossover behavior: from dissipative behavior for sm
sizes to something else for large sizes, with a crosso
length that is long for smallM and shrinks asM grows. Note
that this form ofM dependence of a crossover length is wh
would be expected ifM were arelevantperturbation about
the dissipative depinning fixed point. But we must exerc
caution before drawing such a conclusion.

From the data of Fig. 15 forf p
max50.5,M50.6 it appears

that there may be some interesting size dependence to
crossover: these data forL564 fall somewhat below those
for L5128 for large avalanches. One can test whether
crossover is a finite-size effect~in contrast to one arising
from putative relevance ofM ) by plotting the data versus th

of
,

FIG. 22. ~a! Finite-size scaling plot for cumulative avalanch
area distribution during initial depinning.~b! Scaling plot of the
same data withY51/2.
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scaled area,a/L2: this is done in Fig. 22~a! for a wide range
of system sizes withM50.6. It can be seen that the rollove
at large areas doesnot scale simply with system size. Bu
neither is it consistent with a system-size-independent cr
over: there is much less than the expected factor of 64
ference in the crossover value ofa/L2 betweenL516 and
L564. A plausible intermediate conjecture would be that
crossover scales as a power 12Y of system area: this could
arise fromdangerous irrelevancyof M. The plot in Fig. 22~b!
versusa/L appears roughly consistent with such a conject
with Y'0.5. But this requires the introduction of an ext
scale and exponent into the interpretation of the data.
other interpretation, one that does not require such additio
hypotheses, is that systems withf p

max50.5,M50,6 are in the
midst of some type of crossover for the range of system s
investigated. As discussed later, we believe that this is p
ably the case.

3. Roughness from avalanches

The absence of large avalanches in the presence of
stantial stress overshoots forf p

max50.5 suggests that, right u
to Fcaval

↑ , the manifold should be less rough on long leng

scales than in the dissipative limit. This is indeed found to
the case: In Figs. 19~a! and 19~b!, the spatial power spectrum
of the roughness is shown as a function of wave vector
below Fcaval

↑ . In the dissipative limit, one obtains a pow

law that is consistent with a roughness exponent ofz50.65
60.02 for f p

max50,5 andz50.7160.05 for f p
max51.0 down

to the smallest wave vectors. In contrast, forf p
max50.5, the

spectra with stress overshoots are found to become fla
long length scales; this is particularly pronounced at
largerM. Although we have not studied the system-size
pendence of these spectra in detail, forM50.6 the rough
magnitude of the wave vector at which the crossover fr
power-law rough to flat occurs—as seen in the blowups
the small uku regime in Fig. 19~b!—is similar to the wave
vector inferred from the inverse square root of the syst
area at which the drop-off in the avalanche area distributi
occurs. But to again confuse the interpretation, different
havior is once again seen for the stronger pinning,f p

max

51,M50.8, samples: these show apparent roughness e
nents that are only slightly smaller than in the absence
overshoots and the roughness has less of a tendency to
rate at small wave vectors than the weaker pinning data

Information can also be garnered from the system-s
dependence of the average maximum width,Wmax

5^max(uh(x)2h(x)̄ )u&, of the manifold atFcaval

↑ . In the dis-

sipative case,Wmax;Lz as expected for simple scaling. Th
stronger pinning samples withf p

max51.0,M50.8 show be-
havior for Wmax that is relatively similar to the dissipativ
case, consistent with the spatial power spectra^uĥ(k)2u&. For
the samples withf p

max50.5,M50.6, however, much weake
size dependence is observed~Fig. 23!. We consider severa
possible reasons that this peculiar behavior for these pa
eter values might occur.

If, as appears to be the case for samples withf p
max

50.5,M50.6, the avalanche production was sharply cut
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at a diameter of orderL12Y from its distribution in the dis-
sipative case. The largest avalanches that occur wo
changeh locally by an order ofL (12Y)z, yielding aWmax of
this order. If, instead, the crossover was to a distribut
decaying as a larger power law of the area for large a
lanches, the apparent roughness exponent extracted
Wmax would be somewhat larger. But if the largest av
lanches were qualitatively different from dissipative ones —
perhaps like failed nucleation bubbles withW;L—this
could lead to anincreasedapparent roughness exponent f
Wmax. Unfortunately, at this point, it is hard to conclud
much from this set of data except that something pecu
seems to be going on forf p

max50.5,M50.6. But peculiarity
in this range of parameters appears also in other quantit

4. History dependence of roughness

The data atFcaval

↑ for both the spatial power spectrum o

the roughness and forWmax should be contrasted with thos
in the steady-state moving phase, Fig. 7~a!, and with those in
the ‘‘just started’’ moving state that has not reached ste
state, Fig. 19~a!. The latter two show power-law roughnes
with exponents that are consistent with being universalinde-
pendentof M and independent of whether the manifold h
been slowly stopped from the moving phase or has ba
started moving on initial depinning—albeit with a veloci
dependent cutoff at long scales in the latter case. In cont
the data just belowFcaval

↑ exhibit roughness that depends su

stantially onM.
The trends with changingM are also different for the

stopped samples~at Fc
↓) and the samples at initial depinnin

(Fcaval

↑ ). When the motion has been stopped from the mov

phase, the roughness is slightly larger for largerM, at least
for the weaker pinning. In contrast, the long length sc
roughness in systems that started flat and hadF increased to
Fcaval

↑ tends todecreasewith increasingM because of the

rarity of large system-roughening avalanches with this h
tory.

FIG. 23. Log-log plot of the maximum width of the manifol
just below the initial depinning atFcaval

↑ . Data are averaged over te
samples. For theM50.0 curve the slope is 0.7060.03; for theM
50.2 curve it is 0.56560.02. For theM50.6 curve, the result of
the least squares fit is a slope of 0.2960.06. And finally, for the
M50.8 curve the slope is 0.6460.06.
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5. Variations of Fcaval

_

We have seen that there appear to be interesting di
ences between the physics of avalanches in the dissip
limit and those with stress overshoots. In the dissipative c
the critical force,Fcaval

↑ , defined from the first system-size

avalanche, and that,Fc
↓ , defined by when steady-state m

tion ceases, are essentially the same; the latter being slig
larger and with a somewhat smaller variance because o
way it is defined~the system stops in a somewhat anom
lously strongly pinned region!, see Table III. With substantia
stress overshoots, in contrast, while the lowest force at wh
a finite-size system can have a system-sized avalanch
roughly Fc

↓(M ), thedistribution of Fcaval

↑ extends far further

up into the region in which, once the motion starts, it
extremely unlikely to stop again. From Fig. 20. it is seen t
for f p

max50.5 andL5128, the rms variations ofFcaval

↑ are

about a factor of 4 larger forM50.4 than those forM50,
and for f p

max51.0, they are a factor of 10 larger forM50.8
than for M50, even though the corresponding rms var
tions of Fc

↓ hardly differ. This factor of 10 difference inF
5Fc

↓ corresponds crudely to a factor of 10n'6 difference in
length scale, suggesting that some scale of the order
sixth of the system size might appear for the initial depinn
history with f p

max51.0,M50.8. Recall that such a scale wa
also apparent in the distribution of the forceFchyst

↑ at which

the system restarts after being stopped from the mov
phase.

The data for the rms variations ofFcaval

↑ are shown in Fig.

20 and histograms of the distributions in Figs. 24~a!–24~c!.
Note the strong deviations from simple power-law behav
of the intermediate Mdata for the variances. Surprisingl
the largeM samples withf p

max51.0 have size dependence
the variance ofFcaval

↑ that is, except for the overall amplitude

quite like that of the dissipative limit. This again recalls t
puzzling behavior that was seen for the distribution of a
lanche areas: the strong pinning largeM systems appea
more similar to the dissipative limit than do intermediateM
ones with weak pinning.

6. Crossover behavior

The data we have presented on the statistics of avalan
and the roughness they induce show complicated depend
on the system size, on the magnitude of the overshoots,

TABLE III. Comparison ofFc
↓(M ) andFcaval

↑ (M ) for L5128.

M f p
max ^Fc

↓& ^Fcaval

↑ & $var@Fc
↓(M )#%1/2 $var@Fcaval

↑ (M )#%1/2

0.0 0.5 20.0779 20.0785 0.0004 0.0006
0.1 0.5 20.1087 20.106 0.0004 0.003
0.2 0.5 20.1404 20.137 0.0004 0.003
0.4 0.5 20.2078 20.199 0.0005 0.002
0.6 0.5 20.2866 20.267 0.0004 0.005
0.8 1.0 20.0665 20.060 0.0006 0.009
1.0 1.0 20.1513 20.141 0.0006 0.007
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on the strength of the random pinning. But collectively th
do suggest a plausible scenario involving a subtle crosso
as a function of length scale. For smallM one would expect
dissipativelike behavior for small samples as the effects
small overshoots will need a substantial range of len
scales to build up. At the other extreme, the data for largeM
and strong pinning suggest that very large samples show
havior characterized by thesameexponents as the dissipativ
limit, but with very different amplitudes. In between, at anM
dependent scale, there must then be a crossover from o
the other amplitude. On, for example, a log-log plot of t
rms variations ofFcaval

↑ versus system size this would sho

up as a regime of slope 1/n, followed by a crossover regime
of lower slope to an asymptotic regime of slope again 1n.
The intermediateM samples could then appear to have su
stantially different scaling by virtue of being in the crossov
regime over the range of length scales studied, In the follo
ing subsection we see how such crossover behavior m
arise from the production and development of avalanc
and the effects each has on subsequent ones.

7. Avalanche production and development

We have seen that with stress overshoots, static confi
rations exist in finite-size samples at forces that are subs
tially above@on the scale of variations ofFc

↓(L)] the force
Fc

↓ at which the whole system can move. This suggests
in this regime there may be a change in character of
avalanches as they become large. In contrast to belowFc

↓ ,
where all avalanches will stop, if an avalanche aboveFc

↓

becomes larger than some characteristic size, naively,
haps the velocity correlation lengthjv(F) in the moving
phase, it will run away and the whole system will move. Th
will strongly affect the distribution of avalanche sizes in th
regime, yet it might not have much effect on the durations
moments of those that donot run away: the evidence dis
cussed above is that the durations and moments of thes
indeed rather similar to the large ones that occur withM
50.

The ratesr (F) of avalanche production asF is increased
adiabatically are shown in Fig. 25 for a variety of values
M and f p

max. These are normalized by the number of samp
that are still pinned, i.e., still below theirFcaval

↑ at the givenF.

In contrast to the dissipative limit for whichr (F) increases
sharply with F as F→Fcaval

↑ 'Fc
↓ , the data for nonzeroM

show a peak in the avalanche production rate somewhat
low Fc

↓ and then a marked decrease asF increases into the
region in which some samples have self-sustaining a
lanches and become depinned. For the strongly pinned
tems this suppression is strong; the behavior in the regio
which r (F) is small is shown blown up in the figure. Not
that in this regime the avalanche production rate is two
ders of magnitude lower forM50.8 andM51.0 than for
M50.

Although we have not studied it in detail, this decrease
avalanche production rate is presumably related to the de
tion of close-to-unstable sites in regions in which moderat
sized avalanches have already occurred. This is analogo
3-26
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FIG. 24. Distributions ofFcaval

↑ with, from left to right in each plot,L5128,64,32,16.~a! M50.2,f p
max50.5. ~b! M50.6,f p

max50.5. ~c!

M50.8,f p
max51.0.
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the depletion that occurs after the whole system is stop
from the moving phase. Such depletion will suppress b
the density of ‘‘seeds’’ of avalanches and the probability
them becoming large. Most new avalanches would be
pected to occur in regions that have not yet had substa
sized avalanches. The exception to this are avalanches
get up enough steam that they can run through the depl
regions. Once an avalanche does this, it will continue gro
ing until it sweeps through the whole system and becom
self-sustaining. As the chances of this happening will dep
on the properties of various regions of the system, how la
it has to become to runaway is likely to be subtle.

There are three possible behaviors for the runaway p
cess of large avalanches in the regime aboveFc

↓ . ~i! That
there is a finite sample-size-independent length scalejR(M )
above which avalanches typically run away;~ii ! that the
scale at which runaway occurs grows with system size,
as a decreasingfraction of system size; or~iii ! that the run-
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away scale is proportional to system size in large samples
the dissipative limit, the last of these behaviors is obser
with a proportionality constant close to unity. In contrast,
the artificial model discussed earlier with overshoot stres
felt for the duration of an avalanche, once all segments h
moved at least once, an increase of the force byM /Z is
needed to cause another avalanche and when one does
it is likely to run away after its diameter becomes of ord
the velocity correlation lengthjv of the moving phase at tha
force. Why this is the controlling length scale is explained
the following section.

As discussed in the preceding subsection, the pecu
data for avalanche distributions, etc., forf p

max50.5,M50.6
appear to indicate that in the regimeF.Fc

↓ the cutoff for the
distribution of avalanche areas grows as a power of the a
This would suggest the second scenario as such a cross
in the distribution is presumably associated with a tende
of larger avalanches to run away. In contrast, the avalan
3-27
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FIG. 25. ~a! Avalanche production rate during initial depinning. From top to bottom of the left plot,f p
max50.5, areM50.0, M50.2,

M50.4, andM50.6. The solid line fit to theM50 data is 2.3523.3(20.07852F)0.30. The dotted line is a fit in which onlyCr @from Eq.
~66!# is allowed to vary buta is fixed at 0.5; note there is only one fitting parameter for the latter. In the right plot,f p

max51.0, top to bottom:
M50.0, M50.4, M50.8, M51.0. ~b! Blowup of ~a! near the critical region forf p

max50.5 data. Up arrows along the horizontal axis indica
the medianFcaval

↑ , while down arrows indicatêFc
↓&. ~c! Blowup of ~a! for f p

max51.0 data.~d! Comparison ofr (F) for initial depinning
~insets! with that in the hysteresis loop. Note that for samples withL5128 ~shown! the hysteresis loops are considerably narrower than t
naive widthM /Z.
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distributions observed in this regime with strong pinni
suggest that there may be a crossover from dissipat
critical-like behavior for smaller sizes to dissipativ
cumulative-like behavior for larger sizes, with the crossov
occurring forAa of order 0.120.3L; if this fixed fractionof
L persists for larger sizes, it would support the third scena

In the following section we develop these ideas furth
and test them in the context of the restarting of the manif
after it has come to a stop from the moving phase.

VII. DYNAMICS OF NUCLEATION

In the preceding section we studied some aspects of
the system becomes depinned when it has not previo
02160
e-

.
r
d

w
ly

undergone macroscopic motion. We now return to the rela
question of how the manifold restarts after it has be
stopped by a slow decrease of the force from the mov
phase.

As discussed earlier, the stopping process leaves be
an at-least-somewhat depleted region of small local forc
This means that as the force is increased back up, the ra
avalanche production,r (F) ~which in an infinite system is
just the probability density of the local forces at zero!, will
be small. In Fig. 25~d!, r (F) is plotted as a function ofF for
manifolds that have previously been moving. Even with re
tively strong pinning,f p

max51.0, it is seen that forM50.8
and M51.0 the avalanche production rate is almost th
3-28
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orders of magnitude lower than its typical magnitude in
never-moved dissipative system. Yetr (F) is relatively flat
over the regime in which almost all systems will resta
from Fc

↓ to Fc
↓1M /Z. Note, however, that in the upper en

of this range, at least for the data we have taken foL
5128, there are no samples still pinned. For sma
samples, the range over which the distribution ofFchyst

↑ ex-

tends is broader, i.e., fromFc
↓ to Fc

↓1M /Z. Note that for all
these strong pinning samples, the range over which the
starting occurs is two orders of magnitude larger than
width of the distribution ofFc

↓ .

A. Distribution of restarting avalanches

Although some fraction of the samples of sizeL5128
will restart the first time a site is triggered, by no means
will and, in general, there will be a distribution of avalanc
sizes before restarting. In Fig. 16 the distribution of the ar
of these avalanches is shown for the same parameter
above. The data are somewhat sparse due to the small
ber of avalanches that typically occur in a given sample,
some are observed out to about a tenth of the system a
Over the observed range, these avalanche distributions
perhaps surprisingly, quite close to power laws, with ex
nents close to 0.9. This should be compared with the m
smaller avalanche area distribution exponentk/2'0.39 of
the critical region avalanches in the dissipative limit. But t
measured exponent is close to that of thecumulativedistri-
bution of dissipative avalanches.

B. Bubble nucleation

We conjecture that in the stopped states the length s
above which an avalanche is likely to run away and res

FIG. 26. Distribution ofFchyst

↑ ’s with M50.2 andL564 com-

paring f p
max51.5 andf p

max50.5. The rms ofFc
↓ for the these param

eters are 0.453760.0009 and20.13960.001, respectively. The up
arrows on the horizontal axis indicate^Fc

↓&1M /Z, the maximum
f p

max.
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the overall motion is of the order of the velocity correlatio
lengthjv(F) of the moving phase at the same force. This c
be rationalized from the behavior of the moving phase.

At a force that is only a small amountf aboveFc
↓ ,

f [F2Fc
↓ , ~70!

the moving phase is strongly fluctuating on scales sma
than its correlation length,jv;1/f n. On scales smaller than
this, there is substantial starting and stopping and the mo
is fractal. Given theM independence of many of the qual
tative properties of the moving phase, the motion on sca
smaller thanjv is probably qualitatively indistinguishabl
from a finite dissipative avalanche. Thus a reasonable gu
is that an avalanche from the stopped state atf will be fractal
on small scales and is not likely to run away unless it b
comes of orderjv( f ). But if it does become bigger than this
it will ‘‘think’’ that it is part of the moving phase and its loca
velocity will be unlikely to fluctuate to zero. As its loca
motion continues, it will impart higher stresses to neighb
ing regions and its size will grow. With its interior moving a
approximately the steady-state velocityv̄(F), we would ex-
pect the diameter of the resulting ‘‘bubble’’ to grow linear
in time.

In order to test this hypothesis, we investigate in o
simulationshow the manifold begins to move when the a
plied force is increased after it has been stopped. Forf p

max

50.5 andM50.2, it can be seen from Fig. 26 that restarti
will typically occur at Fchyst

↑ 5Fc
↓1M /Z by which point the

steady-state velocity of the moving phase is already subs
tial and its correlation length short. In Figs. 27~a–l! the tem-
poral evolution of the restarting process is shown; we
that it isnot fractal, but looks more like an expanding nucl
ation bubble as occurs after supercooling through an equ
rium first-order phase transition. After a short initial tra
sient, there is a front that propagates outward from an ini
seed in a roughly deterministic manner. We observe that
radius of the nucleation bubbleR(t) grows approximately
linearly with time so thatR(t)5ct, c thus being an expan
sion rate. The interior of the bubble is, as expected, mov
at roughly the steady-state velocityv̄(F) of the moving
phase.@Note thatc is a speed in thespatial rather than in the
displacement~h! direction, which isv.#

The expansion rate can be estimated from the time dep
dence of the spatially averaged velocityv(t) by assuming a
circular bubble of radiusr (t)5ct, so that

v~ t !'
p~ct!2

L2
v̄. ~71!

In Fig. 28 we thus plot

c~ t ![S v~ t !L2

v̄pt2 D 1/2

~72!

as a function of the timet after the restarting was triggered
for several differentM ’s and f p

max’s. In general, at short times
after nucleation, fractal growth that is like that in a dissip
3-29
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FIG. 27. Dynamics of nucleation: segments that are moving at each of the indicated timest after nucleation are shown.
021603-30
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tive avalanche occurs within an erratically growing region
typical diameterl (t);t1/z with resulting cumulative mo-
ment of the avalanche:m(t);l d1z. This results in an ap-
parent

c~ t !;S 1

t2v̄

dm

dt D 1/2

;t (d1z)/2z23/2;
1

t0.64
. ~73!

See Fig. 28~b!. When the size of the avalanche has reach
jv(F), c(t) stops decreasing and the flattish parts of
curves at intermediate times are indicative of approxima
uniform expansion; the inferredc(t) in this regime is
roughly the expansion rate,c, of the bubble. If the expansio
rate is small, as will occur if the steady-state velocity is lo
then we expectc;jv /tv;jv

12z with tv the characteristic
relaxation time in the moving phase; this is also of order
time at which the crossover from fractal to bubble grow
occurs.

At long times, the whole system is moving andc(t)
'L/Apt as shown. This saturation occurs att;L/c. Be-
cause the region near the origin of the bubble has alre
been moving for some time when the regions far away s
moving, at the time when the furthest regions start movi

FIG. 28. ~a! Effective bubble growth rate,c(t)[(L2v(t)/

p v̄t2)1/2, as a function of time averaged over eightL5128 restart-
ing samples. The solid line is (L2/pt2)1/2, the long-time steady-
state behavior.~b! Log-log plot at early times. The solid line is th
theoretical expectation in the fractal regime with a slope
(d1z)/2z2(3/2)'20.64.
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the roughness of the manifold will begreater than it is in
steady state. The elasticity will diffusively smooth out th
roughness at longer times, leaving behind only the logar
mic roughness characteristic of the moving phase. This
cess roughness near the crossover time from bubble nu
ation to steady-state motion is the cause of the peak in
width w2(t) of the manifold shown in Fig. 8. Naively, we
expect the peakw2(t) to scale as system diameterL, but
subtleties associated with elastic slowing down of the vel
ity inside the bubble might need to be taken into accoun
understand the process more fully.

For f p
max50.5, the forces at which the restarting occurs a

substantially aboveFc
↓ and bubble growth appears to occ

with an expansion rate forM50.6 of c'0.7, close to the
maximum possible rate of unity, while forM50.2, it is
somewhat slower,c'0.5. In the former case, the motio
inside of the bubble is essentially alternating sublattices,
havior characteristic of the plateau in the steady-state ve
ity at v̄'1/2 that occurs with substantial overshoots; see F
1~a!. For the stronger randomness,f p

max51.0, the hysteresis
loops are narrower and the nucleation occurs to a lower
locity state. ForM50.2, the expansion rate is quite sma
c'0.13, but the flat constantc regime in the figure is ob-
servable over a factor of 5 in time. For these parameters
early stages the evolution appears fractal, consistent with
pectations. ForM50.8,f p

max51.0, there is a much narrowe
flat region and the evolution is not obviously bubblelik
This can be seen in the snapshots of the local motion as
bubble expands, shown in Fig. 27. At long times, all of t
samples show, as they must, approach of the spatially a
aged velocity to its steady-state value: this asymptotic beh
ior is indicated in Fig. 28 by the solid line. We see that t
time at whichv(t) becomes close tov̄ is roughly that ex-
pected for a bubble to encompass the whole system and
into its periodic ‘‘images.’’

More investigation of the dynamics of nucleation, in pa
ticular, of the transition from fractal on small scales
bubblelike on larger, and the dependence of the crosso
scale on system size, onF2Fc

↓ , and on the other param
eters, is clearly needed.

C. Nucleation avalanche statistics

Armed with the picture of avalanches in the hystere
loops as fractal on scales of orderjv(F) and bubblelike on
larger scales, we can understand the key aspects of the
lanche statistics in this regime. Avalanches that are trigge
very close toFc

↓—at forces within the distribution ofFc
↓ for

that system size—will be fractal on all scales and very u
likely to run away. We expect their statistics to be similar
those that occur in the regime nearFc

↓ when the force is
increased from an initially flat configuration: the probabili
of their area being larger thana will decay only asa2k/d out
to the largest sizes. But as the force is increased, the s
rate of avalanche production means that there is still a s
stantial probability that no system-sized avalanche will ha
occurred until a force well outside the distribution ofFc

↓ . In
this regime, avalanches that do occur will still have a pro

f
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ability of reaching areaa that decays asa2k/d out to scales
of orderjv(F), but this is now considerably smaller than th
system size. Those that do reach areas of orderjv

d will tend
to run away and so the distribution of areas,p(a,F)da, will
be cut off at thisF-dependent crossover scale. The proba
ity of runaway of an avalanche triggered atF is roughly the
probability that its area become larger thanav(F)
;jv(F)d:

Prun~F !'12E
0

av(F)

p~a,F !da;
1

jv~F !k
, ~74!

wherep(a,F)da is the fraction of avalanches that occur ne
F, which have areas withinda of a. In order to obtain the
cumulative distribution of avalanches in the hysteresis lo
we must multiply the distributionp(a,F) by the probability
that runaway has not yet occurred,

Ppinned~F,L !5expS 2E
Fc

↓

F

r ~F8!LdPrun~F8!dF8D ~75!

and then integrate this overF. If the rate of avalanche pro
duction per unit area was of order unity, thenPpinned would
be small for F2Fc

↓.L21/n and the cumulative avalanch
distribution would be dominated by avalanches in the reg
very nearFc

↓ for which the distribution is characteristic of th
critical point. The cumulative distribution of avalanche are
in the hysteresis loop would then decay with the expon
k/d, consistent with what we observe for the dissipat
case. But withr (F) very small for strong pinning andM
50.8 or M51.0—almost three orders of magnitude smal
than for the dissipative case@see Fig. 25~d!#—Ppinned will
only become small whenjv

d,rL d, corresponding toF2Fc
↓

.r 21/dnL21/n, a factor of 50 or so further fromFc
↓ than in

the dissipative case, roughly consistent with what is
served.

VIII. CROSSOVERS AND ASYMPTOPIA

A. Hysteresis loops

The form of the avalanche distribution in hysteresis loo
with a very low density of nucleation segments should
apparent from the discussion at the end of the preced
section. Most avalanches will take place whenF is close to
the Fchyst

↑ at which the system restarts, thus it is the distrib

tion p(a,^Fchyst

↑ &)da in this regime that will dominate the

cumulative statistics. This results in a distribution of av
lanche areas that for small avalanches is critical with ex
nent k/d, but for large avalanches decays with the larg
cumulative exponentKcum51. With smallr, as occurs in the
strong pinning systems withM50.8 andM51.0, the cross-
over in a system of linear sizeL occurs at a length scale o
order Lr 1/d or corresponding crossover area of orderrL 2.
For the size ranges investigated here—up toL5128—this
means that, in practice, almost the full range of avalan
areas will be in the large avalanche tail region with expon
Kcum51. But extrapolating to very large systems from the
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data would be highly misleading: in the limit of large sy
tems, the distribution should scale like the critical dissipat
limit over most of the range of avalanche sizes with the ra
decay observed in our data showing only for the largest
orders of magnitude of avalanche areas.

The dynamics of a typical runaway event will reflect th
crossover. Initially, it will start as a fractal avalanche simil
to those in the dissipative limit. But when—and if—an av
lanche reaches the crossover length of orderLr 1/d, it will
cross over to bubblelike expansion with its interior behav
like the moving phase and its radius expanding linearly
time at a ratec that scales as (Lr 1/d)12z. As the distribution
of Fchyst

↑ 2Fc
↓ is broad, however, there will be substantial ru

to-run variations in both the crossover size and the rate
growth of the bubble.

The behavior of the size dependence of the distribution
widths of the hysteresis loops, as shown in Figs. 11~a,b!, can
also be better understood in this framework. In small s
tems, the force will typically have to be increased byM /Z
from Fc

↓ in order to trigger restarting. In contrast, in ve
large samples, we expect that the restarting will typica
occur at forcesF5^Fc

↓&1gL21/n that are abovêFc
↓& by an

order of the width of the distribution ofFc
↓ . Yet, because of

the strong suppression of the density,r (F), of seeds for
nucleation of avalanches in the stopped system, in prac
the numerical factorsg can be very large. The distribution o
g in the smallr limit is broad, and has a shape close to
Weibull distribution with characteristic scale 1/r 1/dn and
shape parameter 1/dn, but we do not expect it to be exactl
of this form. The reason is the breakdown of the argum
given in Sec. V. In sufficiently small subregions of siz
(L/b)d of a system of sizeLd, the possible nucleation pro
cesses arenot independent from one subregion to the ne
This is because the diameter of a critical nucleation a
lanche, when it crosses over to approximately determini
bubblelike growth, is of orderjv(F) which is of the order of
a fixed—albeit r dependent—fraction ofL at the typical
forces at which the first runaway avalanche occurs in a la
system. Thus the division into approximately independ
subregions will not work forb.1/r 1/d.

Because the hysteresis loops vanish in the limit of la
systems, the total number of avalanches per unit area
will occur in a hysteresis loop decreases as a power of
tem size. This will also occur in the dissipative limit; how
ever, in that case the ‘‘runaway’’ avalanches that occur
F'Fc

↓ will not have all that much larger moment than on
that only involve, say, half the system area. But due to
strong suppression of avalanche production after a la
event, in the presence of substantial stress overshoots
total number of avalanches will be further reduced in spite
the hysteresis loop becoming wider. The above analysis
plies that the total number of avalanches per unit area
occur in the hysteresis loop will be of order

naval;r 121/dn
1

L1/n
. ~76!

Furthermore, the runaway avalanche will typically run for
3-32
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very long way—probably exponentially far in 1/r—before
stopping at a displacementh, for which the total pinning is
anomalously strong.

At this point, it is not clear whether the numerical data a
consistent with this picture. In particular, it appears that
size dependence of the widths of the hysteresis loop
somewhat weaker than would be expected asymptotic
Nevertheless, we believe that the deviation of the scaling
the width of the hysteresis loops from theL21/n scaling ex-
pected asymptotically is most likely associated with t
crossover from the small system to large system behavio
sufficiently large systems, we conjecture that

m5n. ~77!

B. Initial depinning

The complicated avalanche behavior observed when
pinning is approached for the first time starting from alm
flat initial conditions is probably due to a hybrid of effect
For the strong pinning samples with substantial-sized ov
shoots, in systems of size 1282 enough avalanches typicall
occur before runaway that a strong suppression of the
lanche production rate occurs over the whole system. T
suppression enables the force to be increased well pas
range in which runaway would occur in the dissipative lim
although not as far as it can for samples that have b
stopped from the moving phase. The statistics of the a
lanches in this regime will have a similar form to that
avalanches in the hysteresis loops discussed above, w
crossover from criticallike to cumulative-like at a leng
scale that depends on how stronglyr (F) has been sup
pressed.

For the weaker pinning samples, for example, withf p
max

50.5 andM50.6, the rate of avalanche production is n
suppressed nearly as strongly and it is most likely that
crossover regime is right in the middle of the range
sample sizes studied.

Further systematic tests to investigate this overall scen
would be very useful. In particular, one would like to unde
stand on what aspects of the model, parameters, and his
crucial quantities such as the suppression of avalanche
duction rate after a large avalanche, depend.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have introduced and studied numerica
and by scaling analyses, a simple model of depinning tra
tions in which there are dynamic stress overshoots cause
rapid motion of segments of the manifold.

A. Macroscopic behavior

We have produced a substantial amount of evidence
the macroscopic behavior of this model with various kinds
generic initial conditions isnot hysteretic for a wide range o
stress overshoots in spite of the coexistence over a rang
the driving force of static configurations and steady-st
moving configurations. In particular, the critical forceFc(M )
is uniquely defined and history independentin the limit of
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large systems; the distributions of the critical forceFc
↓ at

which steady-state motion ceases, that at which it rest
when the force is increased from such a stopped state,Fchyst

↑ ,

and that at which macroscopic motion commences when
force is increased from a flat initial condition for the fir
time, Fcaval

↑ , are all narrow and converge toFc(M ) in the

limit of large systems. Furthermore, the steady state velo

v̄(F) is a unique function of the driving forceF that vanishes
as a universal power ofF2Fc . Nevertheless, in principle
there are static configurations that could be reached by c
ful enough control of the dynamics of all the system for
forces up toFc05Fc(M50).Fc(M ). But if the system
were to be started in such a configuration and the force
creased by an amount that is arbitrarily small in the limit
a large system, an avalanche would be triggered that wo
run away and cause the whole system to start moving.

The universality class of the depinning transition for allM
less than a multicritical valueMc appears to be that of th
purely dissipative limit without stress overshoots that h
been analyzed by renormalization group methods previou
This universality class is thus much broader than had b
conjectured.

The crucial feature of the dynamics on which this mac
scopic uniqueness and universality relies is the existence
nonzero density of nucleation sites for new avalanches a
an avalanche has run through a region. These must exis
arbitrarily small increases of the applied force even if th
densityr is much lower than it would have been in the a
sence of stress overshoots. If these did not exist—more
cisely, if there were a depletion layer of local forces after
avalanche—then there would be macroscopic hysteresis
the force needing to be increased by the width of the de
tion layer to restart the system once it has stopped after h
ing moved previously.

In many physical contexts, the ‘‘one-way’’ motion w
have studied here is only a reasonable approximation if
force is never reduced too far below the critical force. If t
manifold can move in either direction—as is the case of
terfaces in, for example, magnets—decrease ofF beyond
2Fc will result in steady-state motion in the opposite dire
tion. If the force is decreased from aboveFc through zero
and2Fc before increasing it back towards the positiveFc ,
the avalanche statistics and critical behavior will be mo
like that of a system that has never been aboveFc than the
‘‘depinning after already having moved’’ that we have stu
ied here. The motion in the backward direction will wipe o
the memory of the previous forward motion. If the system
taken down close to2Fc so that large backwards avalanch
occur but macroscopic motion does not, then there may
interesting subtleties asF is increased back up: som
memory of the earlier forward motion might still exist.

B. Finite-size effects

In the remainder of this last section we summarize
behavior that occurs in our model for a range ofM in which
there is a strongly suppressed density of nucleation se
We also consider briefly under what circumstances sim
3-33
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behavior will be observed; and discuss some of the con
quences for a system in which understanding the finite-
effects is crucial: earthquakes on a geological fault.

In the dissipative limit of our model, all finite-size effec
in the vicinity of the depinning transition occur within
range of forces aroundFc of width of order 1/L1/n. In con-
trast, in the presence of stress overshoots finite-size eff
can be important over a much wider range of forces. Th
effects will be particularly pronounced if the suppression
nucleation seeds for further avalanches is very strong, i.e
after a system spanning avalanche the density of nuclea
segments,r, is very small.

With r small, unless samples are sufficiently large,Ld

.Z/(Mr ), there will usually be no nucleation until the forc
has been increased by the magnitude,M /Z, of the over-
shoots. UnlessM is very small, the nucleation will then b
bubblelike with rapid motion in a linearly expanding bubb
occurring as soon as one segment is triggered. For la
systems, the width of hysteresis loops will start to decre
and eventually, if the scenario presented above is corr
decrease as 1/L1/n, but with a large coefficient that is a ran
domly varying multiple of 1/r 1/dn. Sites that are triggered a
F is increased after the whole system has been stopped
result in finite avalanches with a distribution that cross
over from one power law to another as a function of th
size. Eventually, one of these avalanches will run away:
tially it will grow in a fractal manner, but when its diamete
becomes of the order ofL/r 1/d, it will begin to expand in a
more deterministic manner at an approximately constant
until it covers the whole system and the macroscopic mo
restarts. In the limit of smallr, this regime of bubble growth
will exist over a wide range of length scales.

C. Model earthquake dynamics and statistics

The picture presented here for effects of stress oversh
on the dynamics of finite-size systems that occur as the d
ing force is varied have particularly interesting consequen
for models of earthquakes on disordered faults. The ap
priate driving to model a geological fault is not a consta
force, by rather driving by a weak spring. This is rough
equivalent for our case with short-range elastic interacti
to replacing the applied force by a ‘‘pulling spring’’ with

F~ t !5
G

L2
@vst2h̄~ t !#, ~78!

whereG is an effective elastic constant of order unity, t
1/L2 factor arises from the¹2 elasticity, and

h̄~ t !5
1

Ld (
x

h~x,t ! ~79!

is the spatially averaged displacement.
As has been discussed previously@7#, in the absence o

stress overshoots a system driven with an infinitesim
‘‘shearing’’ velocity vs ‘‘self-organizes’’ into a statistically
steady state with a power-law distribution of avalanche
ameters that falls off as (1/l k)(dl /l ) out to length scales o
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order L ~the cutoff being affected by the magnitude ofG).
There is no particular qualitative distinction between t
character of ‘‘earthquakes’’ that have substantiall !L and
those withl ;L.

With stress overshoots that give rise to a substantial
duction of the density of seeds for nucleating new events,
behavior is quite different. As the pulling spring advanc
there will be a string of avalanches until one runs away a
the whole system moves. This motion will only stop wh
the forceF(t) has decreased as a result of the motion toFc

↓ ,
a force that will have variations of order 1/L1/n. As the spring
slowly restretches, the pulling force will increase again an
series of quakes of various sizes will occur at a rate given
rL d/vs . These events will not relieve much of the accum
lating stress and so the force will continue to increase un
force Fchyst

↑ at which a runaway event occurs. The typic

magnitude ofFchyst

↑ 2Fc
↓ and the width of its distribution are

both of order (1/r 1/dn)(1/L1/n). The evolution of the runaway
event will at first be fractal, but then a crossover to bubb
like growth will occur and it will grow with a constant ex
pansion rate until the whole system is moving.

The initial slip velocity of the large earthquake will be o
order v̄(Fchyst

↑ ), which will vary substantially, but have typi

cal magnitude

vR;
1

~r 1/dL !z2z
. ~80!

As it runs, the driving force will gradually decrease until
gets down to anotherFc

↓ , at which point it will stop. The
total displacement in such an event will be of orderDh
;L2(Fchyst

↑ 2Fc
↓) and its moment hence of order

mR;LdDh;
Ld1z

r 1/dn
~81!

bigger by ther dependent factor than the typical large
events in the dissipative limit.@In obtaining this result, the
scaling lawz11/n52 was used.#

The distribution of earthquake moments in this model w
be a composite of characteristic earthquake and Gutenb
Richter-like statistics@26,27#. Small events will have a
power-law distribution with exponentk/(d1z) that will ob-
tain out to moments of order

mX;~Lr 1/d!d1z, ~82!

much smaller thanmR for small r, The distribution of larger
events will fall off more rapidly with exponentd/(d1z) out
to events with moments of orderm0;Ld1z. Events larger
than this will not occur unless they are runaway events.
these run for a considerably largerDh before stopping, there
will be a strong suppression of the distribution of mome
from m0 out to of ordermR , but the runaway events wil
have a nontrivial distribution.

This picture implies interesting anticorrelations betwe
the occurrences of the largest of the intermediate size and
runaway events: the former are more likely to occur re
tively soon after a runaway event rather than just before
3-34
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because at later stages in the ‘‘earthquake cycle,’’ once
event gets to a small fraction of the system size, it will
most certainly run away. Some information on the statis
of the largest events can also be inferred from the appr
mate Weibull form of the distribution ofFchyst

↑ , which will

primarily determine the moments of the largest events.
In order to translate these results to models more ap

priate for geological faults, the elasticity needs to be lo
ranged, with static stress transfer falling off as

J~x,y!;
1

ux2yu3
~83!

in the two-dimensional case of interest for all but the bigg
earthquakes. This modifies scaling laws toz11/n51 and
k5d211z. In the absence of long-range correlations in t
random properties of the fault, in the dissipative limit t
predicted value ofz is zero, up to logarithms. But with long
range correlated randomness it could be substantially la

The consequences of the scenario suggested by our re
for geological fault dynamics certainly merit further inves
gation along these and other lines. But to conclude this
per, we turn to another important issue: how much can
carried over from the stress overshoot model to other ty
of local dynamic effects? We should remark that this s
nario is valid within the context ofm5n for very large sys-
tems.

D. Other dynamic overshoot effects

At the beginning of this paper, we argued that some of
effects of local inertia of a driven, pinned elastic manifo
would be qualitatively similar to the effects of stress ov
shoots. A key question to raise at this point is whether
finite density of seeds for future avalanche events will be
.

,
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behind in inertial systems. We conjecture that this will be t
case if the inertia is not too large, as we found here for str
overshoots, but this bears more careful thought.

In the context of earthquakes, a more important issue
dynamic frictional weakening. An extreme form of frictiona
weakening was considered in Ref.@20#: if once a segment
has moved, it is always easier for it to move again at a
time in the same earthquake, this will certainly give rise
macroscopic hysteresis. As long as there is healing back
to a higher strength between events, a system spanning e
will leave behind a configuration that cannot start movi
again until the driving force has increased again by eno
to overcome the difference between the static and dyna
friction. In reality, the history dependence of frictional forc
is complicated and some healing will occur already during
event on those segments that slow down or stop while o
parts are still moving. But whether this, combined with d
namic stress overshoots, will leave behind a finite density
nucleation sites for easily triggerable events is a difficult b
important question.

Although this paper has perhaps raised as many ques
as it has answered, the progress it represents in unders
ing of the dynamics of driven elastic manifolds in the pre
ence of both randomness and nondissipative dynam
should help frame and address some of the key questions
remain.
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