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Depinning with dynamic stress overshoots: A hybrid of critical and pseudohysteretic behavior
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A model of an elastic manifold driven through a random medium by an applied Foisentroduced and
studied. The focus is on the effects of inertia and elastic waves, in partgitgéas overshoois which motion
of one segment of the manifold causes a temporary stress on its neighboring segments in addition to the static
stress. Such stress overshoots decrease the critical force for depinning and make the depinning transition
hysteretic with static and pinned configurations coexisting with the steadily moving phase for a r&mnygeof
find that the steady-state velocity of the moving phase is, nevertheless, history independent and the critical
behavior as the force is decreased is in the same universality class as in the absence of stress overshoots—the
dissipative limit in which hysteresis cannot occur and theoretical analysis has been possible. To reach this
conclusion, finite-size scaling analyses have been performed and a variety of quantities studied, including
velocities, roughnesses, distributions of critical forces, and universal amplitude ratios. If the force is increased
slowly from zero, the behavior is complicated with a spectrum of avalanche sizes occurring that seems to be
quite different from the dissipative limit. Related behavior is seen as the force is increased back up again to
restart the motion of samples that have been stopped from the moving phase. The restarting process itself
involves both fractal-like and bubblelike nucleation. Hysteresis loops in small- and intermediate-size samples
can be understood in terms of a depletion layer caused by the stress overshoots. Surprisingly, in the limit of
very large samples the hysteresis loops vanish. Although complicated crossovers complicate the analysis, we
argue that the underlying universality class governing this pseudohysteresis and avalanches is again that of the
apparently very different dissipative limit. But there are history dependent amplitudes—associated with the
depletion layer—that cause striking differences over wide ranges of length scales. Consequences of this picture
for the statistics and dynamics of earthquakes on geological faults are briefly discussed.
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[. INTRODUCTION for F just aboveF.. Several different universality classes
have been studied, including both short- and long-range in-
Extended elastic manifolds pulled throughgaenched teractions, and random forces with or without periodicity—
random medium by an applied foréeexhibit, in the absence the former arising for manifolds with a periodic structure in
of thermal fluctuations, a sharp transition from a pinnedthe direction in which they movgs,7-10.
phase to a moving phase Bss increased through a critical ~ But most of the theoretical analysis has focused on dissi-
valueF [1]. Examples include interfaces between two fluidspative dynamics for which both inertia and any wave or
in porous medig2] or between oppositely magnetized ferro- other nonlocal stress propagation effects are ignored. The
magnetic domains, vortex lines and lattices in type Il superpurpose of this paper is to study some of the consequences of
conductorg3,4], charge density wavd$], and planar crack these and other effects which we shall generically refer to,
fronts in solids[6]. for reasons to be explained shortly, stsess overshoogf-
Although thedepinningtransitions of interest are driven fects.
nonequilibrium transitions, it is instructive to draw an anal- In order to understand the potential of these effects to
ogy with equilibrium phase transitions with the average ve-significantly change the nature of depinning, it is necessary
locity v playing the role of an order parameté&r,a tuning to consider the nature of the irregular local motion that un-
parameter, and the quenched variations of the random potederlies the critical depinning phenomena. The elasticity of
tial loosely analogous—at least as giving rise to anthe manifold mediates between two competing types of
ensemble—to thermal fluctuations. The character of depinforces: the applied driving force and the random local pin-
ning transitions can, one might expect, be either discontinuning forces. For smalF, the pinning dominates and the sys-
ous transitions with hysteresis—loosely like first-ordertem relaxes to one of many static locally stable configura-
transitions—,or  critical—analogous to second-order—tions. But as the force is slowly increased, there will be local
transitions depending on the system and, perhaps, duisits  instabilities when the driving force exceeds the random pin-
tory. Such history dependence is an effect that cannot occuring in some small region. A segment of the manifold will
in true equilibrium. Theoretical analysis has shown that e&hen move forward rapidly and there will be some transient
broad class of realistic models undergariical depinning  motion, limited in spatial extent, until a new static configu-
transition with a unique, history independent critical force inration is reached. For large, in contrast, the applied force

the limit of a large system and will dominate and the system will approach a nonequilibrium
_ statistically steady state with a nonzero mean velocity. Nev-
v~(F—Fc)* (1)  ertheless, especially if the force is not too large, the motion
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on short length and time scales will be very irregular with macroscopicconsequences of this are is the primary subject
instantaneous local velocities that far exceed the macroef this paper. As stress overshoots can occur more readily
scopic average veIocitE than local overjumps caused by inertia, we will generally

In the absence of inertia or wave propagation, each se gfer tg bth type; of effects as stress pvershoots, alth_ough,
ment of the manifold will move in response to the total forceWith slight inconsistency that we trust will not be confusing,
applied to it: from the applied drive, from the random pin- W& will characterize their strength by a parameter that we
ning, and from the other segments via elasticity. As long a§lenoteM. o - _
the applied force is nondecreasing in time, the motian ~_ What is the nature of the depinning transition Msis
least after initial transients have decayed awaifl be only mcrgased from zero? There are various scenarios one can
in the “forward” direction in which the system is driven. réadily envisage. For large enoulyh in the model we intro-
This, combined with the convexity properties of elasticity,duce in th_e following section, an infinitesimal increaserin
means that the static configuration the system will settle int¢f@m any pinned state will result in a nonzero average veloc-
after it is disturbed by an increase—global or local—in thelty at long times. This is because sufficiently large stress
applied force does not depend on the details of its dynamic®Vershoots always induce other segments to move when trig-
The motion can thus be considered as quasistatispite of _gered by_an lnltlal_segment th_at moves in response to an
the rapid local motion that occurs. The basic argument, givelf'créase inF. The increased triggering will spawn further
by Middleton[11], is as follows. Consider two initial con- motion, de_splte the fact_that the stress overshoot is only tgm—
figurations in the same random environment with one lagPorary. This process will run away; and the manifold will
ging in the other in the sense that for all hY)(x,t=0) acquire a nonzero average velocity. Wk_nle it might thus seem
<h®)(x,t=0). The convexity of the elasticity and the his- likely that the trgn5|t|on will bec_ome “first-order” for large
tory independence of the dynamics then imply that the analo®N0UghM, does it do so for arbitrary smalll? If there are
gous inequality will apply at all positive times. From this it '€9imes in which the depinning is indeed discontinuous in
immediately follows that there must be a unique criticalSOMe Way, is there macroscopic hysteresis? In what sense?
force, F.: if there were a value oF at which there existed More generally, what happens to the depinning transition
both a moving and a pinned solution, the moving one wouldPeyond the dissipative limit? If it remains critical—at least in
pass the pinned one even if it were initially lagging behind,SOMe respects—for a rangeMf what is its nature? Can the
contradicting the no-passing inequalft2] qu_aS|stat|c behavior perS|st.macrosgopmally_for eraIIn.

Now consider what can happen in the presence of eithesPite of the presence of additional microscopic hystere3|s? If
inertia or elastic waves that carry stress from one region t§0: What is the size dependence of the hysteresis and related
another in response to motion of one segment. The locdihenomena? The system-size dependence is particularly rel-
dynamics would then appear to be crucial. If the local motion€vant for geological faults for which the statistics of the
is rapid enough that the relaxation to a new static configuraSa/thquakes are affecEe(_:l bo"th by the nature of the drive and
tion is underdamped, a moving segment can overshoot orfg€ distribution of the “sizes” of faults. o
or more potential static configurations before settling, if at S€veral recent papers have undertaken some preliminary
all, in another. Even if the inertia is small enough that suctstudies of the effects of stress overshoots in models of de-
local prolonged jumps do not occur, as long as the motion i€NNING of e_Iastlc mamfoldg. Refereng&3] stud_le_d several
sometimes underdamped, a segment can temporarily 0Ve(pne—d|mensmnall models with long-range elast|C|'§y and stress
shoot a static configuration before relaxing back into it. ThisCVershoots motivated by planar crack fronts driven by ap-
will produce a temporary overshoot of the stress—above it@lied loads. Referenci4] introduced a particularly simple
eventual static value—that this motion induces on neighborm0del with short-range static elasticity and analyzed its
ing segments. Any arbitrary small overshoot in the stress hagfinite-range limit in which all segments of the manifold are
the potential to dislodge another segment if there is on&dually coupled to each other. In this limit, the spatial prop-
nearby that was sufficiently close to being destabilized in thé&Tties of the manifold are averaged away; only time depen-
absence of the overshoot. Again, the effects of this will be t?€NCE remains and mean-field theory becomes exact. Such
cause the system to skip through a potentially static configu€an-field models were the starting point for theoretical un-
ration without stopping. Elastic waves, just like their electro-deérstanding of the finite-dimensional physics in the quasi-
dynamic cousins, carry with them pulses in stress that ar&tatic limit[5]. Whether or not they provide a useful starting
larger than the eventual static stress that will obtain |0ngoomt beyond the dissipative limit, is one of the questions that
after the waves have passed by. These stress overshoots, [{{§ Must address. _ _
those from the inertia of local motion, have the potential to, !N this paper, we investigate numerically and phenomeno-
cause overjumping. Iog|cally the f|n|te_-range version of the stress overshoot

Very generally, overjumping of any kind means thatM0del introduced in Ref.14].
which configuration a pinned manifold stops in depends on
details of its local dynamics and on its history, in a way that
cannot occur in the absence of inertial effects. One particu-
larly interesting consequence of this is the coexistence in two The remainder of this paper is organized as follows: In the
identical samples at the same value of the driving force of dollowing section we introduce the basic lattice model on
static locally stable configuration, and a moving configura-which we focus. In Sec. Ill the general scaling picture is
tion that will “overtake” the static configuration. What the introduced and known results for the dissipative case are
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summarized. In Sec. IV the critical behavior in the moving The stress depends linearly on the displacements of other
phase is studied, initially for the dissipative case, and then iparts of the manifold via
the presence of stress overshoots. We summarize a variety of
eV|der_10e that the crmc_al behavior that occurs as the quVIng cx=> > Jo(Dh(y,t— 7 —3h(x.t), )
force is decreased until the system stops is inda@euni- y 750
versality class as the dissipative case.

Section V turns to the key aspect of overshoots: hysterwhere
esis. We analyze the hysteresis loops that occur when the
system is stopped from the moving phase and restarted by jzz J(7) 3
gradually increasing the force. Various puzzling aspects of .7
the data are discussed and some understanding of the hyster-
esis loops in terms of a low density of segments that can band the sum is over nearest neighborscoffo model stress
readily triggered by an increase Fis reached. In the fol- overshoots, we assume the _S|mplest possible form: that the
lowing section, studies of the dynamics and statistics of ava@Vershoot only applies to neighbors and only lasts for one
lanches that occur as the force is gradually increased afne step, so that
presented. These again lead to puzzling dependence on over- 1
shoot and pinning strengths, although some aspects of the Jy(7= o)=2(1+ M) (4)
avalanches appear very similar to those in the dissipative
limit. The data suggest that various subtle crossovers may béan d
occurring. In Sec. VII the dynamics of the nucleation of re-
starting after a system has been stopped from the moving M
phase are analyzed. It is found that over a substantial range (1) =— 7 (5)
of sizes, bubblelike nucleation can occur.

In Sec. VIl the puzzling aspects of the various sets Ofyjth 7 the number of nearest neighbors. With this stress
data are tentatively resolved in terms of a crossover as fansfer, the jump of any nearest neighborxoinduces an
function of length scale and system size that manifests itselfyirg temporary stress on thth segment. Whei =0, the
in different ways as the various parameters are varied. Figyress transferred to tixéh segment is simply proportional to
nally, in Sec. IX, the conclusions are summarized and applithe static curvature at. This stress will not decrease with
cations to the dynamics of earthquakes are discussed brieﬂyme as |ong as theth segment does not move and the other

In the main body of this paper, we restrict consideration tosegments only move forward or remain at rest; this limit is
weak enough overshoots that do not totally change the locahus the dissipative dynamics already studied extensively.
dynamics. But for sufficiently largil, the overshoots cause However, for positivel the stress on theth segment caused
dramatic changes in the macroscopic behavior. Althoughby a jump forward of one of its neighboring segments will
these are interesting, they are probably peculiar to certaifirst increase by a larger amount than in the absend afd
aspects of the model; results on these will be presented elsthen decreaseat the next time step to reach its quasistatic

where[15]. value.
Modeling of the local pinning forces also involves sub-
Il. MODEL stantial arbitrariness. In Ref14] we chose randomly spaced

pinning positions for each segment with uniform pinning

Near the depinning transition, the dynamics is very jerkystrengths, but this choice did not affect substantially the
with segments of the manifold spending most of their timemean-field behaviof15]. For our present purposes, it is
stationary or almost so, but occasionally getting unpinned bynore convenient to choose the pinning positions for each
the forces from other segments and moving forward only tasegment to be uniformly spaced but with thejield
get pinned again by a combination of the newly exploredstrengths the maximum force they can sustain, randomly
random forces and the elasticity. The inherent discreteness @istributed. In particular, we take the distribution of these
theselocal jumpssuggests that we model the manifold as ayjeld strengths to be uniformly distributed froff, 7.
large number of segments that can jump discontinuously Because these random forces pin, or hold back, the mani-
from one pinning position to another; this is also convenientg|q the corresponding forces(x,h(x)), take on negative

for numerical studies. We define(x,t) to be thesingle- \3jues in the rangg— f,(x,h(x)),0]. With this form of the
valuedscalar displacement of the manifold from some undepjinning forces, the equation of motion is simply given by

formed reference configuration with both the positioand

the timet taken to be discrete. Note that by constraining the  h(x,t+1)=h(x,t) + @[ o (x,t) + F = f,(x,h(x,1))], (6)
displacement field to be single valued, we exclude “over-

hangs” as well as defects such as dislocations that could/here® is the unit step function. Th® function is imposed
otherwise occur in periodic systems. The forces on a segmesb that a segment can move only forward and does so when
of the manifold consist of three terms: the applied fdfce@  the net forcef(x) on it (the argument of th® function), is
static random pinning forcep(x,h(x,t)), and the stress positive; otherwise it remains stationary. With this dynamics,
caused by the elasticity(x,t). when a segment jumps its displacement always increases by
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one. As long a® <1, the (artificial) upper limit on the ve- the least amount of computation and does not appear to in-

locity, this automaton dynamics mimics the continuous timefroduce any troublesome artifacts in the regime of smallish

motion reasonably well. M of primary interest here. , o
Note that in the absence of elasticity, wiM=0, F, Finally, to limit boundary effects, we impose periodic

— ™ ith each segment becoming stuck on an anomapoundary cond!tlpns _oh(x,t)._ This is especially important
P as we will use finite-size scaling to analyze much of the data;

lously strong pinning site. In the presence of the eIaStIC'ty’this is substantially more straightforward with periodic
__— ) - ) IE')oundary conditions. Our simulations are restricted to two
strong pinning sites, and the critical for_cg _W'" decrease. Fordimensions which we chose because of the availability of the
weak pinning forces, however, the definition of the applied, ijest range of system sizes without running into the com-
force in this model is somewhat pathological: when released)ications associated with very large stresses that arise in
from a pinning segment, a segment can jump forward fagne-dimensional depinning with short-range interactions. We
enough that the total force on it becomes negative and it Cagtudy systems of sizeX L up to 256< 256 with most of our
then pull forward other segments resulting in overall motionu|arge“ system data on 128 128 samples.
even if F is negative. To make it more realistic, one could The “rules” of the cellular automaton model are simple:
replaceF by F+1; so that there is always enough force to at each time step, for eaoh if f(x,t)>0 thenh(x,t+1)
make the forces at pinning segments non-negative. With non=1+h(x,t) and a new randonfi,(x) is chosen uniformly
zero M, another adjustment should really be made as mor¢rom the interval[o,fg‘aﬁ; otherwiseh(x,t+1)=h(x,t). To
realistic forms of stress overshoot involve a concomitantudy the transition as it is approached from the moving
negative force on the segment that has moved. Since the zephase, we start with a large>F_ and then decreadeat a
of the applied force is entirely a convention, we will not slow rate that is chosen to avoid transient effects as described
make these adjustments; this will mean, however, that irin detail in Sec. IV. To study the transition as it is approached
some regimes the critical “force” will be negative. from the stopped phasg, is increased adiabatically from a
Several additional aspects of the model need to be spedarge negative value, i.ek; is increased just enough to trig-
fied: the initial conditions and the order of the updating. Toger the segment whose net force is maximum and then held
avoid lock step or other “facetinglike” behavidrl6], we  fixed until the motion of the other segments in response to
choose the pinning positions of each segment to be offsehe triggered segment stops. More details are given in Sec.
from one another by random amounts in the intef\@l]. VI.
Because of the integer character of the jumps, the fractional For the statistical analyses, many different realizations are
part of the displacement of a given segment does not evolvgenerated via different initializations ¢h(x)} chosen from
with time. It might be thought that the displacement-a uniform distribution on the intervdl0,1]—the random
independent randomness induced by this constraint couldffsets—andf,(x)}. Error bars due to statistical uncertaini-
dominate over the randomness of interest, especially as far @&igs are quoted throughout the paper.
determining the variations of critical forces, etc., in finite-
size systems. Indeed, such an effect does occur for systems ||| SCALING AND DISSIPATIVE DYNAMICS
with periodic randomness such as charge density wgbies
resulting in variations of the critical force in finite samples ~ Before presenting results for the systems of interest with
that are controlled by an exponeritthat isdifferentthan the ~ stress overshoots, we briefly summarize the scaling behavior
true correlation length exponent it is the former that must that one observes near the critical force in the absence of
satisfy the rigorous inequalifyL 7], »'=2/d while the truey  Stress overshoots; i.e., fé =0. As the force is adiabati-
can be smaller. But in the present case it can be shown th&glly increased from zero, local instabilities lead to a succes-
the additional randomness is exacﬂy equiva|ent td amde- sion of avalanchesmost of which will be smaII, but which
pendent spatially random force that is the derivative of acan occasionally become large as the unique critical force
random function. This type of random force cannot combine™co iS approached. AbovE, the mean velocity in the sta-
with the h dependent randomness to yield an effective nonfistical steady state rises continuously with an expon@nt
gradient random force because of the statistical tilt symmetryrhe motion is jerky out to length scales of order the velocity
[18]. It will thus only cause variations in the critical force of correlation length, which diverges at the critical force as
finite samples that that are smaller by at least one power of
JL than is the case for charge density waves. The effects of _ 1
the random shifts we have added are thus expected to be & (F—Feo)”
subdominant to the primary sources of randomness for large
systems(although they could give rise to additional correc- The characteristic time for relaxation on scales of oleis
tions to scaling The fact that the variations in the critical
forces in finite-size systems decrease substantially faster than T~ & (8)
the inverse square root of their area—which wontd have
occurred for charge density waves—supports this assertionand in this time the manifold typically moves forward by an
The updating of the displacements is doneyarallel af-  amount
ter computing all of the stresses. While there are alternate
sequential methods of updating, this parallel method requires Ah~§§. ©)

@)
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These three exponents, z, and{, characterize the scaling

behavior near the transition. The velocity exponent is related {~3 (16)
to these via the observation that the mean velocity is of the
order of the characteristic displacement per characteristigng
time, so that
2

v~ &P~ (F~Fep)” (10) 2=2-ge. (17)

with These yield
B=(z=]v. (1)
B~1— 9€ (18

In the pinned phase, the critical behavior as the force is
adiabatically increased can, in the absence of stress ovegecently Chauvet al.[19] have computed these exponents
shoots, be related to that in the moving phase revieweg, second order iz, obtaining
above. In particular, the scaling of the dynamics and shape of
the avalanches, the probability that they will be large, the

€
divergence a¥ ., is approached of the cutoff size in their {~3(1+0.1433%) (19
distribution, and the “roughness” of the manifold at the criti-
cal point are all given in terms of the same three exponentsnd
In Sec. VI we will discuss the avalanches in detail, but for
now we focus on the macroscopic behavior such as the ve- 2 )
z~2— —€—0.0432%", (20

locity in the moving phase and the mean displacements in
the pinned phase.

The mean displacement in response to a spatially varyinglthough there are some doubts about the validity of these
applied force yields, via a statistical symmetry of the systemsecond-order resul{g].
a scaling law that relates two of the exponents. This relation
can be derived from the average static polarizability

9

IV. CRITICAL BEHAVIOR IN MOVING PHASE

dh(q,w=0)

7e(q) (12

x(g,0=0)=

to a perturbing force(q)cos@- x). A change of variables to

We will shortly turn to presentation of our numerical re-
sults for the critical behavior in the moving phase. But first,
it is instructive to summarize the behavior found in the
mean-field limit for smalM and to consider several possible

scenarios that might be observed in short-range systems. We
can then determine which scenario is most consistent with
the data.

h(x,t)=h’(x,t)— V"~ 2¢(x), yields an equation of motion for
h” that is statistically identical to the original one for
independendf the perturbing force. Therefore

oh(q,w=0) 1 1 A. Mean-field limit and scaling scenarios
se(q)  1-Ja) @ (13 In the mean-field limit all of the sites are coupled to all of
the others so that the number of “nearest neighbds’s
Since the polarizability should scale as\h/AF  equal to the number of segments,(more preciselyZ=N

—1). In this limit, the critical force is found to benchanged

for M less than a critical valueMl.=1. The velocity versus

force curve is modified for any nonzekd, however, but the

exponentB remains at its quasistatic value gt=1 for M

<M_. The other universal properties of the transition are

also unchanged for smaill, including the lack of hysteresis

in steady state and the asymptotics of the distribution of large

avalanches as the critical force is approached from below.
The simplest scenario for the short-range systems of in-

terest would be like that of the mean-field limit: unchanged

~ £ (qé), with X a scaling function, this yields the
scaling law[7]

1
[H-=2, (14)

Dissipative exponents

The critical exponents foM =0 take simple mean-field

values ofv=1/2, z=2, characteristic of diffusive dynamics, €f€ ' : !
and (=0 above the critical dimension af,=4 for short-  critical behavior and no macroscopic hysteresis for sivall

range elasticity. The velocity scales wigh=1 [5]. But previous work has shown that thiannotbe the case. As
Below four dimensions, renormalization group expan-Shown in Refs[13,20, any stress overshoot will cause the

claims of universality as well as yielding results for the ex-namic behavior can persist for somtd {dependentrange of

ponents as expansions in powers of forces below the quasistatic critical forégy. This implies
that some form of macroscopic hysteresis can exist since
locally stable—at least linearly stable—static configurations

e=4—d: (15)
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exist up toF.,. But whether such configurations are nonlin- which would dominate over the leadin@r subdominant

early stable to, for example, an arbitrarily small increase imanalytic shift if ¢>1 (or ¢>3). Earlier numerical results by

F, is a question of substantial importance to which we willRamanathan and Fisher suggested that this might be the case

return later. For now, we focus on the moving states and hoy13].

they stop as the force is lowered. There are two simple scenarios for the velocity versus
The simplest scenaridhat cannot immediately be ruled force if M is relevant. One possibility is that the depinning

out is a modified version of the mean-field scenario: a veloctransition is drivendiscontinuous immediatelfpr any non-

ity versus force curve with a well defined critical fordé,l, zeroM. The average velocity would then have a discontinu-

that is nonhysteretic as the force is decreased; history indéty of

pendent steady states aboFé; and critical exponents,

B,v',z' unchanged from their quasistatic values. In renor-

malization group language, this would correspondvkdoe-

ing anirrelevant perturbation, at least as far as behavior inwwe call this thefirst-order scenario

the moving phasés concerned. _ If M is relevant but the transition is stitiontinuous one
If this mean-field-like scenario indeed applies for smhll  \yould expect it to be in a different critical universality class.

to the finite-range model, we expect the following scalingIn thi : ; —
. R s case, the scaling functid®(y— ) ~y*, so thatv (f)
behavior for bothM and the proximity to theM-dependent remains continuous but with a new exponent

critical force.

U_minN MAe, (29

f=F—F.M) (21) B=Bo— ¢p (26)

and with B, the quasistatic value. Asymptotically close to the
critical force the new critical behavior would be observed,
but for f>M¢ the average velocity curve would cross over
v_(M ,F)~fBB(M) ’ (22) to the_dissipative beh_avior. We refer to this as tesv uni-
¢ versality class scenario
While more exotic scenarios may be possible, we will

with the crossover exponexit<0 indicating the irrelevance limit our consideration to the three scenarios enumerated

of M, and B a scaling function. In analogous situations in 2P0Ve- o _ o
equilibrium statistical mechanics, if a parameter suciMas _ NOte that we have explicitlyiot considered scenarios in
does not change the nature of the transition, the effead of Which the velocity in the moving phase is hysteretic. Al-

on F}: can be taken into account perturbatively. Because O}hough we cannot rule this out entirely, the fact that the ran-

the singular nature of the critical fixed point that describesdom environment through which the manifold moves acts, to

the quasistatic depinning—resulting, in part, from the ab-S°Me extent, like thermal noise, suggests that if there were

sence of thermal fluctuations but, more essentially, from th‘}g{nore tphan one pleS'ble mowrtlg Eha?es for the iameha%p'ltlhed
jerky nature of the motion—the “analytic parts” might not orce, thereé would be some stochastic process by which the

be smooth functions d¥l, but under the assumption that they systiadmbcoturidtjump.from (_)I_nbe.to tt:e othtgr. Thf feSH't of .tTS
are, we expect that would be that, as in equilibrium transitions, true “coexist-

ence” would not be possible over a range of parameters. This
argument doesot apply to coexistence between static and
moving phases, as the former are not subject to time-
dependent “noise.”

FLAM)=Fgo—aM—bM?+.... (23

Nevertheless, there can be singutarrections to scaling
determined by the form dB and the crossover exponegt
This scenario, in whichM is irrelevant when it is small,
we call thedissipative scenariowe note, however, that this Our primary numerical results in the moving phase were
scenario is compatible with a change in behavior at a criticatarried out on square two-dimensional samples of linear di-
value of M as occurs in mean-field theory. This would give mensionL =128. The maximum pinning forcg® was cho-
rise, forM close to its critical value, to a crossover to somesen to be either 0.5 or 1.0, so that the typical pinning force is
kind of multicritical behavior emerging at larger velocities. comparable to the change in elastic forces caused by jumping
More interesting behavior would occur if the qualitative of one neighbor of a segment.
mean-field results on the effects of smildo not simply We focus on the results fdvl small enough that the ef-
carry over to the finite-range case. This would be the case ffects of a tendency for the two square-lattice sublattices to

M is arelevantperturbation and would correspond to a cross-move alternately, are not too significant—ftﬂ""‘x:O.S, we

over scaling function, such @in Eq. (22) with ¢ positive.  gyydy M<0.8. Figure 1a) showso(F) for 0<M<0.6 in

A relevant perturbatio would yield a singular correction jncrements of 0.2. To generate these curves we start, for each

to the critical force of the form M at F>F}, with almost flat initial conditions—segment
displacements random in (0,1)—and then decrease the ap-

[Feo—Fe(M)sing= MY, (24 plied force very slowly untilF;(M) is reached.

B. Numerical results in moving phase
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(a) 0.4 T T T
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L=128, 17%0.5 o1 L |
0.2 o—oOM=0.0 -
B—a M=0.2
01 A—AM=0.4 | 0 . . .
v—VM=06 0 02 04 06 08 1
0 TR I T N R M
-0.4 -03 -02 =01 0 01 02 03 04 - _
F FIG. 2. Critical force,F,(M=0)—F(M), as a function oM
(b) indicated by filled circles. The solid line is the result of a quadratic
0.3 T T fit bM+cM? with b=0.27+0.01 andc=0.12+0.01, while the
] 1 dotted line is the result of a fit aM**P with a=0.384+0.003 and
0.25 - - D=0.18+0.02. The error bars are smaller than the symbols.
02 | . M we may be observing more of either finite-size effects or
nonequilibrium effects; the former if the time scale decreases
> 015 . with M and the latter if it increases witkl. For other system
- L=128, {"%0.5 sizes, the equilibration time is decreased correspondingly,
01 f o—oM=0.0 - roughly with L?, i.e., according to the dynamic scaling
- Hm=g-i ] found in the dissipative limit.
0.05 - v—vA 2 Mo06 We first study the dependence bhof the critical force,
Fé, below which the steady-state motion ceases, in particu-
%05 “0.05 \L o1 o015 o2 lar to test.whetheFé(M) is a singular or smooth function of
F-F_(M) M (see Fig. 2 The results, along with a quadratic fit,
— 1 _El — 2
FIG. 1. () Steady-state velocity (F), for L=128 andfj™® Fe(0)—F¢(M)=0.24+0.00M +0.012+0.0)M*,
=0.5. The applied force is changed by an increment of 0.005 after (27)

the manifold has been equilibrated for 12 000 time sispg texk
Initially, F>F£(M) and then it is decreased unti=0 before be-
ing increased back up again to its starting value. The filled arrow:
indicate this cycling ofF. The errors bars are smaller than the
symbols.(b) The same aga) but with the curves shifted by an
approximateF{(M).

are shown in Fig. 2 Note that if we had included a constant
é'n the fit, the constant would have vanished within one stan-
dard deviation, as it should, and the linear coefficient would
have been only slightly modified to 0.26.01.] A natural
expectation—although overly naive—is a linear decrease of
Fi by an amountM/Z. For smallM, this appears to work
For our finite Systems Wltlh.:128, Fé(M) is defined as rather well. The reason for this linear shift and the correc-

being the force below which the system halts after 12 00¢ions to it will be discussed later. o
time steps, a value chosen so as to be long enough for tran- The analytic fit should be compared to a fit—with the
sients to decay, but not so long that rare configurations of théame number of parameters—to an arbitrary powerdlaw
randomness with anomalously strong pinning forces calependence of the shift I, such as would be observed\f
dominate. were a relevant perturbation. The best fit to thg data
For M =0, there is a finite-size crossover regime in whichyields an exponent #/=1.18+0.02; note, however, that by
the system may stop due to an anomalously strongly pinneeye the quadratic fit looks slightly better than the power-law
region and the infinite system behavior will no longer befit. Although with a weakly relevani! with a crossover ex-
observed. This tends to occur when the average velocitponent less than unity, as the power-law fit suggests, one
while it is still moving is of orderL "#/*. For L=128, this would presumably have a linear analytic term as well and
value is about 0.013 and with this average velocity, the manithus the inferredp~0.85 should not be taken too seriously.
fold will typically travel a distance several times the charac-In any case, one must ask whether it is consistent with our
teristic displacement.¢ within 12000 time steps. As we other data. It does not appear to be: if we use this valug of
shall see, our estimates are that at least one measure of tteetry and find a scaling functioB(M/f?) for the velocity
characteristic time scale, which grows&s is only weakly — data of Fig. 1a), the curves do not collapse. This suggests
dependent oM. Thus, we use this same criterion for non- that eitherM is irrelevant, or that it is sufficiently weakly
zeroM, while being aware that it may bias our scaling resultsrelevant that the crossover exponeénis small enough that it
slightly such that if time scales do change substantially withwould not dominate the shift iff.. Other data, as summa-
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FIG. 3. Log-log plot of the average steady statas a function FIG_‘ 4. Plot of the minimum spatially averggeq velgajl;yin as
of f=F—FL(M), whereF}(M) is varied to optimize the linearity & function of botiM, L andf™*. For the determination afyy, see
of each curve within the scaling regime. The symbols used are thE'€ t€xt. The symbols for the variowd’s are the same as in Fig.
same as in Fig. (®), with the filled squares representing=0.2, 1(a), except for the left trlanglgs that represéht=0.1. The pe;t fit
f7@*=1.0. Each curve represents an average over ten samples wigope for theM=0.0 curve is—0.90+0.02, for M=0.1 it is
the error bars representing the rms sample-to-sample variations in 0-89£0.03, forM=0.4 the slope is—0.91+0.01, and forM
the velocity. The applied force increment is 0.0005 for approxi-=—0-6 it is —0.83+0.04. Each set of data are averaged over ten
matelyv<0.1, while forv>0.1 the force increment is 0.005. For samples.
the weaker randomness, the best fit slope Kbr=0.0 is 0.66 . . L .
+0.03; forM=0.2 it is 0.66-0.02; forM=0.4 it is 0.68-0.05;  there is a discontinuity opening up as a powehNyfperhaps
and forM=0.6 the slope is 0.670.10. For the stronger random- suggesting that the transition is driven discontinuous imme-
ness atM =0.2, 8=0.66+0.02. diately? We can check the data against finée-size cross-

over behavior expected in th® =0 quasistatic limit; this

rized below, suggest that, in fady is irrelevant, at least for would yield
the steady-state moving phase.

The mean velocity data can be used to obtain the critical
exponeniB and see whether it depends M Figure 3 shows

a log-log plot of thev (F) curves with the besFEi(M) value, Figure 4 tests for this scaling and finds it to be consistent
which makes the curve the most linear, determined by handith the data: even foM =0.4, the slope of the log-log plot
for eachM. The error bars indicated are the rms variations inis —0.91+0.01, which agrees within one standard deviation
the average velocity over ten samples. The values of thwith the M =0.0 slope. While we do observe an increase in
applied forces used are separated by an interval of 3he minimum average velocity with increasimg at fixed

Vmin~L A1, (30)

x 10" 4, one tenth of those used in Fig(al size, it isnot the size-independent power-law increase with
The velocity critical exponeng inferred from these data M that would have been expected if the transition became
is, forM=0, discontinuous. Instead, there is &rdependent coefficient
associated with the average velocity, just as occurs for small
Bo=0.66+0.03. (28) M in mean-field theory. Similar minimum velocity data were

also obtained for stronger randomness, ifi*=1. We thus
- . Qee that the finite-size data are consistent with the dissipative
standard deviation W't.h the data for all thevalues shown. scenario, withsmall stress overshoots being irrelevant for
Even forM=0.6, we find the velocity versus force curves

B=0.67+0.1, (29) _ But it is still possiblg that a new critical universality class

is emerging for smaM if p<<1, so that the emergence of the

although the straight line fit is only over one and a halfnew universality class would be difficult to detect by simply
decades in the reduced forde,substantially less than the mMeasuring the velocity exponent as this would be litlle
three decades of the fit fd =0. From Fig. 1a), it is ap-  changed from its dissipative-limit value. We therefore look
parent that this reduced range of scaling is primarily due to &nore closely at the finite-size crossover regime to investigate
larger amplitude for the singular velocity for larger [see  Whether other aspects of the behavior really look similar to
Fig. 1(b)]. the M =0 quasistatic depinning.

The data suggest that the evidence is at least consistent Anticipating that it might be the stopping behavior that
with the dissipative critical behavior obtaining asymptoti- Would distinguish between quasistatic and overshoot dynam-
cally for smallM; i.e., with M being an irrelevant perturba- ics, we have explored some of the dynamics of the stopping
tion. process. Given that there is a distributionl—'(ifs, we let the

We must be careful, however, especially as Figa),1b)  manifold equilibrate at af three standard deviations above
and 3 indicate that the minimum average velocity is increasthe average of {(M). We then lowered to the average of
ing with increasingM. Might this observation suggest that F.(M) and waited for the manifold to come to a stop. Figure

Surprisingly, this value appears to be consistent within on
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FIG. 5. Log-log plot ofv(tge,—t) as a function of the time

before the motion ceases faf,,. The data were obtained from a 10 160 10 160
uniformly random initial condition on the interv@0,1] and equili-

brated at an applied force higher thaby three times the standard ~ FIG. 6. The average maximum wid#., of stopped mani-
deviation of this critical force. After equilibration, the applied force folds as a function ot for variousM’s and fJ'*s. The data are
was lowered to the averade,, whereuporu(t) is recorded until ~ taken after the manifold has stopped moving following a gradual
the manifold eventually stops. The solid line is the theoretical ex-decrease of the driving force. Eathl,,, is an average over ten
pectation within the scaling regime. The slopes of the numericafamples. The slopes can be used to extract the expgnéiur the
data, in order of increasinyl, are 0.8310.001, 0.846:0.002, left part of the figure,fJ=0.5; theM=0.0 data are best fit by
0.981+0.003, 1.085:0.004, and 0.9750.004, respectively. Note 0.75=0.05; M=0.2 yields a slope of 0.720.03; and forM =0.6
that for theM =0.8 curve,fT®=1.0. Each curve represents an av- the slope is 0.750.05. For the the right plofi®*=1.0; for the
erage over those of approximate|y 500 samp|esl M=0.0 curve, the slope is 0.790.02; for M=0.2 it is 0.81
+0.02; theM=0.6 slope is 0.750.01; while for M=0.8, the
slope is 0.7%0.01. Note that the overall magnitude 9f,,,, is

5 plots the instantaneous spatially averaged velad(ty av-
P b Y g adty n.ﬁéightly larger for the stronger pinning.

eraged over many samples as they come to a stop at ti

tsiop: Here we explicitly see that the variolsamples come which the behavior changes character is larger for stronger
to a stop in a similar gradual manner; only the amphtudesénning Overall it appears that, at least up uMik0.6, the

vary. The differences between the curves are presumably d Inite-size crossover regime looks similar to the dissipative
to the M dependence of the amplitude of the steady-stat —0 case 9 P

v_(F) curves. The final stages of the stopping process can be We can also determing from the power spectrum of the

analyzed—at least for the dissipativél0) case—by a gigpjacement just after the motion has stopped from the mov-

simple scaling argument. Once only a small fraction of theo hhase: we use the same equilibration time and applied

system is still moving, the average velocity will be inversely ¢, increments as in Figs(a and 7b). In two dimen-

proportional to the arek?. Since the velocity scales g5 2 sions

and lengths as?, we expect ’

(tgg— 1)@+ €22 <|ﬁ(k)|2>=f d’xe*X(h(x)h(0))~k 22, (32)

o ()~ —— (31)
L where the brackets denote averaging over samples. From
) . Fig. 8@ we see that fitting to this form over a range of one

th_e dat_a on a log-log plot, Fig. 5, are reasonably consistent,q a half decades for samples with- 256 yields¢=0.72

with this for all values oM tested. +0.02 and 0.74 0.01 forM =0.0 andM = 0.5, respectively,

We can also probe the finite-size crossover regime inygain in mutual agreement and similar to the values from the
terms of theroughnessWe define themaximum widthof the . ,aximum width discussed above. But again, apparently

manifold W,,,, as the absolute value of the maximum @Via'slightly larger than ther=2 value from the first-order

tion of the displacement from its spatially averaged value, ~expansion. Again, the cumulative evidence suggests that at
Wia=(maxh(x) —h|). This should scale as¢ with {~2/3  least up untiM>0.7, it is not likely that a new universality
for M=0. If M is irrelevant, then the same should hold trueclass is emerging in the “equilibrium” moving or stopped
for all small M. Figure 6 demonstrates that the maximumphase a®y —0.

width does indeed obey this scaling with system size, but |t is useful to compare our values of the exponéntith
with apparent values of that are somewhat larger thgn  those previously obtained. Leschhatnal. found, in numeri-
even forM=0.0 for which{=0.75+0.05 is inferred from cal simulations,¢=0.75=0.02 for M=0.0 [21]. The most
the data withf|/®*=0.5. Although the exponent appears to besolid theoretical result is that3 is alower boundfor . This

M independent, there is @f-dependent coefficient with the comes from application of finite-size scaling to the connec-
overall width increasing—albeit only slightly—with increas- tions between the variations of the critical force and the cor-
ing M. For the stronger randomness daitg>*=1, this ten-  relation length exponent—see discussion below. While
dency is less strong but that is because the valumMait  Narayan and Fishd7] had argued that the value ef3 is
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‘ just aboveFé from almost flat initial conditions. The mean-square
10° s ‘ width of the manifold as a function of time is shown on a log-log
2m/L 20m/L

] plot. The curves have been shifted along the vertical axis for clarity.
The expected slope in the scaling regime of these curve&d/'is 20
FIG. 7. (a) Log-log plot of the square root of the power spec- that we can extract the dynamic exponemtter measuring inde-
trum of a manifold in steady state both just above the depinningpendently[(a)]. The linear fits yield a slope of 0.860.01 for M
transition, open symbols, and just after the manifold has stoppee-0.0 and 0.86:0.01 forM =0.2. The scaling regime should obtain
after the force is decreased gradually, filled symbols. The variousnly for t<&? since we are above the transitigr<L so that a
sets of data have been shifted along the vertical axis for clarity. Focrossover to time-independent roughness should occur vthen
the moving configurations,F=-0.0775 for M=0.0, F= ~ &%, The crossover scale is in rough agreement with theoretical
—0.1389 forM=0.2, andF=—0.2436 forM=0.5. For eachM estimates. FoM = 0.5 the behavior is rather different from smaller
the data are averaged over 100 samples oflsiz56. The rough-  M: they exhibit too much curvature to be readily explained by cor-
ness exponend can be extracted from the linear fits over the ap- rections to scaling and a substantial overshoot that we believe is due
propriate wave vector interval: the expected slope {4+ ¢). The  to the merging of many nucleating bubbles as the steady state is
quoted error bars are a measure of the dependence of the apparapproached. The apparent slope in this regime is#A®02, al-
slope on the range over which the data are fit. The slopes of ththough this is most likely just an effective exponent. For the stron-
moving data are-1.65+0.01, —1.65+0.02, —1.69+0.01 forM ger randomnessf®=1.0, atM=0.8 a fit would yield Z/z
=0.0, M=0.2, andM =0.5, respectively. While the slopes for the =0.99+0.01. Despite this larger dynamic roughening exponent,
stopped data are-1.72=0.02 and—1.74+0.01 for M=0.0 and the static roughness exponent is also larger and the infeiigedot
M=0.5. Note that at the smallest wave vectors flattening is evideninuch changed from thiel =0 data.(b) Same aga) but without any
in the moving data but not the stopped data, as expected. Also nothifting of the curves.
the appearance of a peak at the zone corner in the moving data; this
represents t_he tendency for alternating sublattice m_otlon nEQ)(at Océxact to all orders e, Chauveet al.[19] have computed the
curs, especially for largeM. (b) We plot data forM =0.8f ]
=1.0, andL =256 for both stoppedlight dot9 and moving(dark exponents.to 'second order énand found that the roughness
dots configurations. We extract &of 0.75+0.01 for both curves. €Xponent is increased t¢=(e/3)(1+0.1433k)+O(€%),
These curves have not been shifted with respect to each éther. Which naively extrapolated to two dimensions yields
Same plot aga), but without any shifting of the data and over a ~0.86, substantially higher than the value inferred numeri-
narrower region irk space, so that the amplitudes can be comparedcally. Whether or not this discrepancy is due to the neglect of
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terms higher order ire, due to some problem with the ex- " g 0g. while these data could be fit with the samever

pansion, or due to corrections to scaling remains in doubt. Ié limited range of times, there is clearly some new physics

is worth noting in this context that for one-dimensional Sys’emerging' an upward curvature on the log-log plot and a
tems with the long-range interactions appropriate for Cracksubstantial—more than a factor of 2—overshoot in the ve-

fronts, Ramanathan and Fishds] found that to obtain re- locity before it settles down to its steady-state value. This

I|ablg and universal Vall.JeS df, a!‘a'yses of corrections to effect is related to the change in the dynamical onset of the
scaling were needed. With _these mcluded_, they found a valupnotion to which we will turn in Sec. VII.

O.f 4 very close to Fhat predicted from.the first-ordeexpan- Aside from the transient effects associated with approach
sionwithoutany higher-order corrections. to steady state, all our measurements in the moving phase

For completeness, we have also studied the spatial pow%ﬁggest that the critical behavior is most consistent with the

spectrum of the displacements just above the depinning trarEﬁssipative universality class obtained for all sufficiently
sition. Figures 7@ and 7b) SEOWS the square root of the small M as the transition is approached from above. This is
averaged power spectrum for<1. The roughness expo- gespitethe M-dependent shift iff; and the concomitant hys-
nents obtained forM=0.0,0.2,0.5 are again roughly in teresjs that is possible because of the existence of linearly
agreement with each otheg=0.65+0.01, 0.65-0.02, and  staple static configurations up @, which is larger than
0.69£0.01, respectively—but slightly smaller than thoseg! e will analyze this paradox later. For now, it appears
found for the stopped manifold. In the moving phase, NOW+h4t the mean-field-like scenario has won out over the first-

ever, there should be a crossover at long wavelenéi}s, o der scenario and the new universality class scenario.
~1, to the Edwards-Wilkinson universality class with only

logarithmic roughnes$22]. This arises because on scales
larger tharé, , the motion makes the randomness appear like
white noise in both space and time and the displacement |f we accept thaM is irrelevant for the steady-state mov-
correlation function becomes ing critical behavior, the observed changesvais increased
in the moving phase fdF just aboveF}: appear to be prima-
rily attributable to the increased amplitude (M) of the
velocity nearF., v~A,(M)f~. As seen in Figs. (b) and 3,
for larger M, the velocity rises more rapidly with increasing
with D(F) an effective diffusion constant. This crossover is F until it becomes close tg at which point sublattice effects
observed for the smallektn Fig. 7(a) where the slope of the sét in. A similar increase in the amplitude of the velocity is
power spectrum decreases in contrast to the data taken aftepserved in mean-field theory, with the exponghtun-
the motion has stopped. We note that this difference in slopehanged for smal\ but the amplitude of the velocity grow-
between the moving and stopped spectra is not as promineiitg with M. In both cases, this implies that the widthFrof
when the randomness is stronger as shown in Rig). 7 the depinning transition narrows with increasig—naively
For the moving configurations we observe a peak in thgust by the narrowing of the range Bf— F; over whichv is
power spectrum ak=(,7). This peak is caused by the small.
tendency of one segment's motion to trigger jumps of its If the universality class of the critical behavior in the
neighbors at th@exttime step. The structure and amplitude moving phase is independent bf over a range oM, then
of the peak look similar for all of thé's shown, although there should be various universal relations between nonuni-
the wave vector dependence indicates that there are somgersal coefficientsuniversal amplitude ratiasA priori, we
what more segments participating in the sublattice behaviofould expect three nonuniversal scale factors associated
atM=0.5 than atM =0; but only about a third more. with the scaling relationships between length and, respec-
The dynamic exponent in the moving phaggcan be tively, deviation from criticality,F — F.; displacement, and
determined in various ways from data near the critical forcetime. We can define these, for example, by the scaling of the
We first study thenonequilibrium roughenin@f the mani-  correlation length,
fold starting with almost flat initial conditions. We define

C. Amplitude ratios

(h(k,w)h(—k,— »))~ (33

|—iw+Dk??’

14

Ar
F—F}

(35

w2(t)=([h(x,t) — h(t)2)~ 242, (34) &~

with the overbar denoting spatial averaging over the sample. i ,

The scaling behavior is expected for times short compared tg'€an-square displacements at separations smallegthan
the critical correlation time which diverges aF .. Once the

roughness exponent has been calculated independently from ([h(x,t)—h(0}t)1%)~A|x|?%; (36)
the same set of configurations as in Figa)7z can be ex-

tracted from the log-log plot ofé(t) vst as is done in Figs. and velocity

8(a,p For M=0.0 andM =0.2 we see that the dynamic ex-

ponentsz are very similarz=1.51+0.03 for both. However, A A [E_Fl\A

for M=0.5, the data are somewhat further above the transi- v~ _“gfﬁ/v% _“( C) =A,(F—FL)8 (37)
tion as they correspond to an equilibrium average velocity of A" Al Ar 0 o
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Cy andCg. are strongly dependent dv in the range studied.

10° | 7 One would then guess that the dependence of the amplitude
of the velocity,A,(M), on M is primarily caused by ale-
™ creasein the characteristitime scaleas M increases. This
3«: will have consequences for the behavior of other quantities
= 0 M=0.0, ™05 as will now be discussed.
g 10° | OM=02,{"-05 . A useful quantity to study is the temporal fluctuations in

AM=0.4,1,"=0.5

VM=08,1, =05

*M=08,1,"=1.0
Pmax

x M=1.0,,""=1.0

the instantaneous spatially averaged velooify) in finite-
size samples: this has information about both length and time

, scales. For a fixed average velocity the magnitude of the
10 100 fluctuations should increase with increasikigbecause the

L system is effectively closer to the transition. Since regions of
size of the order of the velocity correlation length will fluc-
tuate roughly independently, the variance of the instanta-
neous velocity should, in a system much larger tfaihe

FIG. 9. Log-log plot of the rms variations &f.(M) as a func-
tion of the system length. The inverse correlation exponents 1/
can be inferred from the slopes. For thle=0.0 curve the slope is
—1.29+0.03; forM=0.2 it is —1.29+0.02; forM =0.4 the slope
is —1.18+0.06; and forM =0.6 it is —1.22+0.03. For the stron- ~ — e &
ger randomness data, whih= 0.8, the slope is 1.220.03, while var(v)=([(v(t)—v)“])~v F-
for M=1.0itis 1.19-0.05. The dotted line along thé =0.0 curve
is the result of a fit that includes a correction to scaling with a
correction exponené and correction amplitud®,=0.78+0.01;
the inferred modified correlation length exponenti4.30+0.03.

(40

Since we have not yet defined the correlation length pre-
cisely, this could well serve as its definition, thereby fixing
the definition of the amplitudé\r. The universality of the

where we measure all lengths in units of the lattice constan@MPlitude ratios can then be checked by comparingMhe
But in the absence of stress overshoots the statistical “tiitdependence of the amplitude of pa(t) ] with those of the
symmetry of the system that relates the exponénamd » ~ Varations in F! and the roughness. These results are pre-
via the triviality of the averaged response to a static spatiallypented in Table I.

varying additional applied force, also relates the associated The correlation timer, can also be obtained from the
coefficients: truncatedvelocity fluctuations,

Ar

Ar_ I'()=(v(Hv(0))—v?. (41)
An

CiK, (39)

) ) . ) o Integrating over time yields,
whereCy is a universal dimensionless coefficient alds

the long-wavelength elastic constant, which, in our model, is £
simply the inverse of the coordination numbér f I'(t)dt=C,,7,v°— (42

For M =0, we thus expect that amplitudes of scaling laws Le
that only involve the three exponergsy, and ¢ should be
expressible in terms of the two amplitudag and A, only.  with C,, a universal coefficient. The resulting, can, to-
For example, the rms variations in the critical fofég in  gether withé, , be used to check other scaling relati¢ase
finite-size systems should be expressible in term#obr, Table ). Note, however, that there are difficulties associated

via Eq. (36), Ap: with the subtraction needed to obtain the truncated correla-
tions in the most interesting regime in which the fluctuations
WafFg(L)]~C,CeL (39 are large and an accurate extractiorvaproblematic.

The velocity-velocity correlations can also be used to
probe the nature of the dynamics; in particular, by studying
e power spectrum which is the Fourier transfof?’(uu) of
(t). To understand how this is expected to behave in the
issipative limit, it is useful to consider thecal velocity-

with C, universal.

It is not clear,a priori, whether the statistical tilt symme-
try argument can be applied in the presence of stress ove};
shoots and the concomitant local hysteresis. This is becaus
in essence, it relies on the history independence of linea . . ; ;
response of at least some quantitie)é. In thpe moving phase, r?loc'ty correlatpn funct|on<z.)(x,t)v(0,0r)])'. Ajc”Iong d's'h
which we are currently focusing, it seems reasonable that t 2nceij|%§.v or time sepgratlon$> oo this will approac
argument Shou'd app|y and the amp"tude ratios hence b@ . But within a correlation Space-tlme Volume, the local
related as in the dissipative case. But we should remain ale¥elocities will be characteristic of avalanche events and
to the possibility that apparent failure of expected scalinghence be fractal. The correlations will be proportionabto
laws may be due to this assumption. times a conditional expectation o{x,t) given that there is

Qualitative examination of the numerical data for themotion—i.e., a jump—at (0,0). These conditional correla-
roughnesde.g., Fig. Ta) and the variations in the critical tions within the space-time correlation volume will reflect
forceFé, (see Fig. 9] suggests that neither of the amplitudesthe fractal structure, being of order|4F ¢ or 141~¢2
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TABLE I. Universal amplitude ratio data. The parentheses dewhichever is smaller. Integrating the associated scaling
note the uncertainty in the last digit of the quoted amplitudes. Theorms overx and Fourier transforming in time, one finds that
first row isM; all the data shown ha\@”=0.5. The second row is  for > 1/7,
obtained from the amplitude of the Fourier transform of théa
correlation function forL=128 slightly aboveFé like the data 2 fd 1
shown in Fig. 7c) for L=256. The third row is the combination of f(w)%CpS = — ,
amplitudes A,/A, determined from the combination W0z d gdmzripldztOlz
v(LYAT(0))Y%v)?P9 whereT'(0), v, B, and v are all mea-
sured. The fourth row is obtained from the ratio of the second to thaVith Cpg a universal coefficient. .
third row. The fifth row is obtained from the combination/f) The log-log plot of the square root of the velocity power
X{KY[F—F.(M)]f}. The sixth row is the expected universal SPectrumFig. 10(b)] appears to exhibit power-law behavior
ratio Cy determined from the second, the fourth, and the fifth rows:for large » for both the values oM shown. ForM =0, the
note the agreement within error bars of all the columns. The seventdbserved exponent is close to the expected valuedof (
row is determined fromAr=CyKA,, with the M=0.0 value for  +{)/2z~0.86 over two and a half decades in frequency. For
Ck used. The eighth row, the velocity amplitude , is obtained M =0.6, the best fit slope is somewhat larger, but some cur-
from the relation A, /A,)(1/A£). The ninth row shows thé, ob-  vature is evident and consistency with the dissipative result
tained from the best power-law fits of the velocity data of Fig. 3.is not ruled out. In both of these sets of data, there is a
Note the agreement within the errors with the eighth row, with thecrossover at low frequencies to a flat spectrum. This is more
exception of the largedt for which there is a small apparent in- pronounced in thel =0 data which are effectively further
consistency. The tenth row is obtained via EtR) from the integral  from the critical regime—&/L smaller—than theM=0.6
of the ratio of the time-dependent velocity-velocity correlations yata pecause the two sets of data were taken at approxi-

JT(t)dt to I'(0) for particular choices of the forces close to the matelv th ma which is cl r to th " ndin
critical force. The eleventh row, the velocity correlation ting, is _aey € same ch 1s closer to the correspo 9

obtained from the decay constant of exponential fits to the sam&min(L,M) for M=0.6.
I'(t) as the tenth row. The twelfth row is the expected universal Not only does the value dFé(M) provide us useful in-
ratio C,, obtained from the previous two rows; note that it is con- formation, but its variations do as well. In the finite-size
sistent with being constant except for the largdstiata. The thir-  limited scaling regime in which <&, ¢ is replaced with. in
teenth row is the correlation lengitj obtained from the velocity scaling laws and we expect
autocorrelationss) = (7,/A) Y%, with ¢, taken from the eleventh
row. £, can also be obtained frol(0) andv via Eq(40). This data {var[Fé(M )]}1/2~ L~ (44)
is presented in row 14. The fifteenth row is the force amplitude
H ~ _ n1/v ; R . . . .

obtained fromAg~(F—F¢(M))(£);". The sixteenth row is ob- Figure 9 demonstrates this scaling with the system length,
tglned from the finite-size varlatlo_ns in the cr_ltlcal f_orce shown iNthe obtained correlation length exponents being £.092,
Fig. 9, and the seventeenth row is the putative universal @tio ¢, M=0 and forM=0.6. v=0.81+0.02. Calculations of
inferred from _the previous tow rows; note it is conS|ster_1t with be'ngNarayan[ZB] yield the leading irrelevant eigenvalue at the
constant within thgadmittedly large error barsin the eighteenth : o . . .

: . . . ) guasistatic fixed point as approximatetye/3. This suggests
row, the velocity amplituded, is obtained from the fifteenth row . . . 1

a fit of the data of Fig. 9 with the form & (M)]

and from the third row. ey 1Py J- ¥ (
=CL Y/(1+B,L~ %7 vyielding »=0.77+0.03 with B,

(43)

1 M 0.0 0.2 0.4 0.6 =0.78+0.01.
We have found that a variety of properties of the steady-
2 An 0.98(1) 1.03(1) 1.13(1) 1.23(1) state moving phase as well as the variations of the critical
3 AnlA 0.39(2) 0.47(4) 0.60(7) 1.0(1) force at which the system stops on decreasing the drive are
4 A 25(3) 2.2(4) 1.9(6) 1.2(6) all consistent with critical behavior that is independent of the
5 1 magnitude of the stress overshoots. Given the local hyster-
COAR? 0.51(6) 0.6(1) 0.7(1) 1.0(2) esis that is intrinsic with stress overshoots, this universality
K is more than a little surprising. In the following section, we
6 Ck(universa)  0.70(8) 0.69(8)  0.7(1)  0.6(2)  conpsider to what extent this applies more generally, with par-
7 Ar 0.16(2) 0.17(2) 0.19(4) 0.21(5) ticylar reference to macroscopic hysteresis.
8 A, 1.3(2) 1.53(3) 1.8(6)  3.0(9)
9 A, (simulation 1.20(1) 1.49(2) 2.29(2) 4.26(3)
10 Coum 158(5) 146(10) 145(16) 210(20) V. HYSTERESIS
1 Ty 83(1)  88(2)  94(4)  222(6) We now turn to an analysis of the hysteretic phenomena
12 C,, (universa) 1.90(6) 1.7(1)  1.5(2) 1.1(1) that are implied by the coexistence of moving and stationary
13 & 10(1)  11(2) 13(3)  31(10)  solutions at the same force in the presence of stress over-
14 & 14(2)  21(3) 23(4)  42(11)  shoots. A crucial question that we must address is whether
15 Ar 0.11(2) 0.10(2) 0.08(3) 0.08(5) hysteresis persists imacroscopicsystems that are not pre-
16 CaAr 0.21(2) 0.22(1) 0.13(1) 0.14(2) pared in special ways. In particular, are there hysteresis loops
17 C, (universa)  1.9(1) 2.20(9) 1.6(2) 1.8(4) with a width that is nonzero in the limit of large systems? If
18 A, 17(2)  2.3(4) 3(1) 5(2) not, as we shall see is the case, how does the hysteresis

depend on system size? Can one understand this in terms of
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(a) pears to be close th/4=M/Z, the magnitude of the stress
: ' overshoot. On the basis of these data, it would appear that
the situation is rather simple: on decreasing the force the
steady-state moving phase and the stopping process are not
qualitatively dependent om, but once the system has
stopped, an increase of the force My Z is required to start
it up again. Once restarted, the velocity rapidly increases to
that of the apparently unique moving “state.” The reason for
this macroscopic hysteresis would appear to be simple. If the
force on each of the segments caused by the last motion of
its neighbors before the system stopped was not enough to
cause it to move, then at later times the force will be less
than that needed to make a segment move by at M&&tas
the stress overshoots from its neighbors’ jumping will no
longer be in effect. If this applies to all of the segments, it
should be necessary to increase the force back up again by at
least M/Z before anything can start to move. This would
imply truly macroscopic hysteresis that is independent of
size for large systems.

A more careful examination of both the data and the ar-
gument above shows that it is fallacious: even wﬁﬂ*f“
=0.5, a small fraction of samples have substantially nar-
rower hysteresis loops. There must thus be some segments
that can be restarted by an increase in the force from the
stopped state by less thafVZ. In the following subsection,
we discuss the origin of this effect, but first, we present and
analyze the numerical data.

T
M=0.6

107 | o
A. Distributions of F!
Q hyst
B w0 b ] For reasons that will become clear later, we can obtain
<E more useful data on the hysteresis by increasing the strength

of the randomness. Most of our detailed hysteresis data are
10 . : . ; ] for f*=1.0 andM =0.8, the latter being sufficiently large
0.001 0.01 0.1 1.0 that the effects of overshoots are strong, but not so léoye
@ this larger value of ) that sublattice effects start to play a
FIG. 10. (a) Time-dependent fluctuations of the instantaneousrole. For these parameter values, the mean force at which the
spatially averaged velocity(t) for M=0.0,0.2,0.4, and 0.6. For all System stops on decreasiRgunder the procedure discussed
data,L=128 andf;®=0.5. Each sample is first equilibrated at in Sec. IV is
some applied force which is then subsequently lowered at a rate of
4.2x 108 (see text, until the applied force is such that the steady- <F<L:>” —0.0665 (45)
state average velocity is approximately 0.04). Log-log plot of the
square root of the velocity power spectrum far=0.0 (lower plob with the rms variations about this of
andM = 0.6 (upper ploj. The data have been smoothed by averag-
ing over groups of five frequencies. The dashed line in both plots is \/var[l:é(f;nax: 1.0M =0.8)]~0.0006. (46)

the theoretical expectation in the scaling regime: a slope- (d . T 1 .
+{)I2z~—0.86 forM =0. Afit yields a slope of-0.88+0.01 for In Fig. 11(a), the distributions of; _ are shown for vari-

M=0. But for M=0.6, the slope is rather larger than expected: ous system sizes. It can be seen that they are much
—1.12+0.01. broader—by almost two orders of magnitude for
o ) L=128—than the distributions of .. The shapes of the
the purely dissipative dynamics that appear to control thejistributions at first appear rather strange. For the smaller
properties of the steady-state moving phase? Or is new phygystem sizes, a substantial fraction of the weight is in a nar-
ics needed? row peak that has similar width to that of the distribution of
In Fig. 1(_a), hyst.eresrinsalx loops are shown for typical FL, but is shifted up from this by an amouﬁtlh - Fl

samples of S|ze. 1’2.8Mth fp=0.5 andM f“’”? 01006 .An M/Z. In the largest samples, this peak has com?oletely dis-
upwards arrow indicates the forEéhyst’ at which the system appeared and we see that the width of the hysteresis loop has
starts moving agairafter it has been stopped #&. by a  narrowed considerably. The narrowing with size of the me-
gradual decrease in the force. Fsk=0 no hysteresis is dian width of the hysteresis loops is shown in a log-log plot
apparent while for positivé, the differenceFlhyst— F}: ap- in Fig. 12. As was evident in the shape of the distributions, a

M=0.0,L=128,fpma;0.5
n 1 n
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°r 1.1 12T 1o L i FIG. 12. Log-log plot of the of the hysteresis loop fdr=0.8
and M =1.0 with f{®=1.0. The slope of the large data forM
=0.8 is —0.87=0.02 with an amplitude of 3#40.2. For theM
=1.0 data, the slope is-0.74+0.01 with an amplitude of 2.9

%1 0 ?.ﬂ 02%01 0 ?.1I 02%01 0 %).ﬂ 02%01 0 ?.11 0.2 +0.2. We did not include thé =16 data points in the linear re-
Fchyst Fchyst Fchyst FchySt gression as there is a clear crossover at small scales.

T :(b-) for M=1.0. Note that these exponents are obtained from a

L=16 | narrow range of length scales and crossover behavior is

likely to be playing a role; we will return to the issue of

8 . 80 - b crossovers later. Nevertheless, in spite of uncertainties in the

B 11 oor 11 | asymptotic size dependence of the hysteresis loops, the over-

all trend is clear: in the limit of large systems, thédth of

let 4 0 160 | . the hysteresis loops vanisfihis is in spite of the fact that

there are many linearly stable static configurations that coex-

ist with the moving state up to the forde,; which is sub-

|4t 11 |40 | - stantially greater thaﬁlhys[.

I ] I 1 Before discussing this result, it is instructive to consider
5 . 20 . what happens in the dissipative limitj=0. Although it
2r 7 20 I } might appear that there would be no hysteresis in this case,
1t 1 | ] this is not strictly correct for finite-size systems that have
d been stopped from a moving state. At the force at which the
02202 o0 | 02 _0‘4‘*‘2 o | o2 system stops, it gets stuck in a somewhat anomalously strong
g Chysr Fchyst Fchyst pinning region(the extent _of a_nomaly depends on the rate of
decrease of the forgeGetting it unstuck from such a region,
in the sense that all parts of the system move for at least
some distance, can require an increase in the force that is
comparable to the width of the distribution Bf.. Thus we
expect “hysteresis loops” in the dissipative limit to have a
width of orderL =",

If the systems with stress overshoots behaved like the
dissipative case in all universal aspects, one would expect
¥he asymptotic large system-size dependence of the width of
the hysteresis loops to have the same exponent as the dissi-
pative case, i.e., that=v. Up to questions about estimation
of uncertainties in the presence of complicated crossovers, it
appearsthat this isnot the case: we seem to find

20 00

10 80 1
L=128 L=64 L=32

0 0
—02 0 | 02202 o0
? F

FIG. 11. (a) Probability distribution ofF/, Pron:thS) for M
=0.8 andf*=1.0 for different system size¢b) Same aga) but

with M=1.0. The vertical bar on each horizontal axis indicates
(Fhy+m/z.

crossover length of around=20 is seen in these data. For
small sizes the hysteresis loops have width that is typicall
close toM/Z. But for the large sizes, the typical width ap-
pears to decrease as a powelof

_ 1
mediarg thy52—<Fg>~ D (47)

M=V (50)
with ) ) .
corresponding to system-size dependenceF@)jyst being
pu~1.15+0.03 (48) slower than that oiFﬁ;. If this were indeed the case, we
would expect that it would most likely hold asymptotically
for M=0.8 and for any M>0. Unfortunately, the range of data is not so
large as to conclusively rule out equality rather than inequal-
n~1.35+0.02 (49 ity, although if w= v one would probably need either a large
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dimensionless amplitude ratio between the coefficients of the (a)
size dependence of the two critical forces, or strongly non- 20 [T 2 T X0 T 20 T
monotonic behavior; we will later explore such scenarios. I 18| | _|.=12le || L2 | o128
But for now we focus on the scaling behavior that seems to

be emerging for system sizes larger than of order 20 or so for ;5 | Jis L Qs L dis L i

fpmax=1.0,M =0.8.

It appears that the larger system sizisexhibit scaling —_
behavior of thedistributions a more stringent test than ex- g
ponents. Indeed, the size dependence of the distributions prcp "10 - 110 10 q10 | .
vides a useful way to understand the causes of the size de:g
pendence of the hysteresis. a

Let us assume that restarting on increasing the force afte
stopping occurs via some kind of nucleation process whose
occurrence is dominated by scales that are much smaller tha
the system size. Then we expect a density of nucleatior
segments—or “seeds”—with a distribution of values of the
local critical forcesF¢ needed to restart. If this distribution ' " ' N
extends down tdF., larger systems are more likely than Chyst Chyst Chyst Chyst
smaller ones to have a seed with a snfall As the lowest P v Y S, (b)
Fs in a given stopped configuration will be the one that de-
terminesFlhyst, this will yield a distribution of critical forces

that becomes squeezed dowrFtﬁpasLeoc. A simple check
on the assumption of locality of the seeds is accomplished by
estimating the distribution d?ihysl for a sample of siz&, by

considering it as being made bf independensamples of
sizeL/b whosngs are drawn independently from tlod- T
serveddistribution for these smaller size samples. In Figs. &
13(a) and 13b), this is carried out fol.=128 andb=2,4, 09_
and 8. As can be seen, the distributions obtained agree ver
well with those measured for the=128 samples directly.

This agreement is particularly striking given that the data for
thyst for L=16 in Figs. 11a) and 11b) have a very different

form than those for the large sampld3his difference in 0 0 0
form for the distributions is the source of the crossover ob- 2 OT 02-02 0¢ 02-02_ 0? 02-02_ ° 02
served in the size dependence of the width of the hysteresi Chyst Chyst Chyst Chyst

loop.)
The agreement of the actual distribution I‘ei for L FIG. 13. (a) Distributions, PrObFihyS), for M=0.8, f7*=1.0,

=128 with that obtained from the distribution Wllh 16 andL =128 inferred from data for smaller sizes. The 128 curve
suggests that the nucleation process in a sample of size 1¢%the same as in Fig. 11 while the other distributions are obtained
is typically dominated by regions whose diameter is less thaIn trﬁetk;g:t ($4S§éeagg a)l széatf;fl’lrt?}&'g 11%) rescaled as described
16. Once such a small nucleation region gets going, it will P

typically expand to make the whole system restart, indepen- ;

dent of the existence or lack thereof of seeds in other regionglistribution. Picking the minimum of thé&. 's from S

or of other stochastic properties of the rest of the system=b? subsystems, each of which has a dlstrlbutlorF@f
Before analyzing the consequences of this, we must cautiof o+ yanishes asF{C —(F} >)d# 1 for small FT <F >

that a crucial question is whether such a relation between therIdS a power-law decrease withof the widith of the dis
. . . T . . - -
distributions Oﬂ:Chyst for systems of siz& andL /b holds, in tribution, and, indeed, the actu@rm of the distribution. We

the limit of largeL, for only a limited range ob, for any  exnect a Weibull distribution with one nonuniversal scale
b<L, or for b up to somesubdominantpower ofL. parameteff,,, [24].

For now, we will extract the shape of the distribution from
the observation that there is at least a substantial ranpe of

0 0 0 0
-0.2 0 0.2-0.2 0 0.2-0.2 0 0.2-0.2 0 0.2

L=128 L=64 | L=32 | L=16 |
I 1 [ L1281 [ L=128] [ | L=128]

—_
- B
>
<
°10 10 - 10 —10 - E

) e e e FL —FL\det
over which the relationship between the distributions of Prok{dFT J~ du [ 7oy C)
thyst for sizeL and sizeL/b does hold. Ch sfy | fy
The basic picture of the restarting being controlled by the Fl _fFl\de
least pinned of many independent seeds enables one to relate Xexr{ ( Chy;t C) } (51)
h

the size dependence of the medlz'abhyst to the form of the
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20

20— move with less of an increase B should,a fortiori have
M=1.0 moved already because of the stress overshoot that was
] present before the motion stopped. In terms of the distribu-
tion of the total force{f(x)} on a segment, which must be
positive for it to jump, the stopped configuration will have a
depletion layer no segments withf(x) in the interval
(—M/Z,0) [and of course none with(x) >0]. The behavior

4 of this crude model is thus very simple: th¢F) curve is
shifted down(in F) by M/Z, the steadily moving states are
identical to those atM=0 with F—F+M/Z. When the
force is increased after stopping, no motion will occur until
the depletion layer disappears, theref(ﬁéhystz F}:+ M/z

for each sample.

Before we return to the model of primary interest, it is
worth noting that a model that is much less pathological than
the crude model discussed above, nevertheless, has much of
the same behavior. Thisonadditive stress overshoot model
has nearest neighbor stress overshoots that last for one time
step and a “self-overshoot{analogous to inertjathat like-
wise lasts for one time step. But the stress overshoots are
Weibull form with two fitting parameters. The light solid line is the nonaddltlve so that any site has a stress overshoot that is
data forM = 0.8, L = 128, andi "=1.0. The right plot is, similarly, either zero oM/Z. For example, if two nearest neighbors of
M=1.0 (sameL and ) with the scale parameter for the solid @ Segment jump, that segment feels a stress overshoot of
line Weibull distribution 0.078 withe = 1.35 from Fig. 12, and the M/Z, in contrast to the B1/Z overshoot it would feel in our
dashed line the best fit Weibull distribution. primary model. The partial equivalence between this nonad-

ditive stress overshoot model and the crude model can be
As can be seen in Fig. 14, this yields a rather good fit to theeasily understood. If the total force on a segment does not
data forL =128 with the value ofu extracted from the size change from the previous time step, it cannot jump at the
dependence of the median. If, instead, we do a best fit to thgext time step. Thereforehangesin the total force on a
shape of the distribution for the largest size, we fipd, segment are what determines whether a segment jumps or
~1.08 forM=0.8 and forM =1.0f*=1.0, u~1.25. Note  not at the next time step. At fixeH, changes in the total
that these values are slightly smaller than those obtainefbrce on a segment arise from nearest neighbors jumping at
from the size dependence and thus somewnhat closer to the previous time step and from the segment itself jumping at
this may well be a sign of slow crossover to asymptoticthe previous time step. In the nonadditive model, each of

i
Chyst

FIG. 14. Left plot shows distribution oﬁ:T Wlth dark solid

line a Weibull distribution, Eq(51), with scale parameter of 0.048
andu=1.15 obtained from Fig. 12, and dashed line a best fit to the

behavior that is like the dissipative limit. these will involve an extrd/Z stress. Thus as long as mo-
o _ tion has existed somewhere in the systems for more than one
B. Origins of seeds for restarting time step, given a configuration of the crude model and

We next develop an understanding of the origins of thewhich segments have jumped on the previous time step,
unusual hysteretic behavior that was found in the numericalhere is an exactly equivalent configuration of the nonaddi-
studies: in particular, the origins of the seeds for nucleatiortive model which will have the same dynamics at all future
of motion when the force is increased back up again after thémes as long a§ remains fixed. But the dynamics amet
motion has stopped. To do this, we need to understand howlly equivalent: when the first segment moves in the crude
the manifold stops moving @ is decreased t6;(M) as it  model, it can trigger others far away; this cannot happen in
is this that sets up the configurations in which the seeds existhe nonadditive model. Nevertheless, the steady-state veloc-
We first analyze the basic role of the stress overshoots in thigy as a function of force will be the same in these two
steady-state moving phase. models, with the critical force in the infinite system limit

A very crude approximation to the effects of the stressshifted down by exacti/Z from the dissipative case. The
overshoots is to ignore their local nature. We thus considehysteresis loops will also be similar, but not identical: in both
an artificial model in which iany segment has moved on the cases there will be a depletion layer of widh/Z after the
previous time step, the force atfl the segments is increased system has stopped and the force will have to be increased
by M/Z above what it would be with purely dissipative dy- by this for motion to start again. But in finite-size samples
namics. As long as something is always moving, this is identhe behavior will be slightly different as it is much more
tical to merely increasing the applied force B/Z. But likely in the nonadditive model that motion could start in one
once the system has stopped—because of a decrease in tlegion but die out: the actual critical force for restarting
applied force or because of running into a strongly pinnedvould then be slightly higher. The dynamics of the transient
region—no segment can move again until the force is inimotion on restarting would also differ due to the locality of
creased byM/Z; this is because any segment that couldthe nonadditive model.
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The decrease df; with M in the crude and nonadditive ~ TABLE II. The probability 0fn=0,1,2,3, or 4 of the nearest
models is the underlying cause for the linear decrease dfeighbors of a segment having jumped at the previous time step,
Fg(M) in the primary model. As long as segments On|ygiven that the segment jumps. For0, the_re are large fluctuations
move in response to their neighbors’ moving, what is cruciaf® We record a range of values. The sizd.is128 and average
in determiningFé is how the system gets through potential velocity approximately 0.1,
stic;king points. Some of these are likely to ?nvolv.e only ONe tmax M 0 (range 1 2 3 4
neighbor of a segment moving at the previous time step; it"
they do, then the critical force at which they can proceed.5 0.0 (0.0005,0.002) 055 030 0.10 0.05
will, in the absence of other changes of the dynamics due t0.5 0.2 (0.0,0.001) 045 035 0.15 0.05
M, be justM/Z lower than it would be wittM=0. In the 05 0.4 (0.0,0.001) 030 0.35 025 0.10
limit of small M, we expect that the sequence of jump$at o5 0.6 (0.0,0.001) 0.20 030 030 0.20
will be very close to that af + M/Z in the absence of over- g5 0.8 (0.0,0.00025) 0.10 020 030 0.40

shoots. 1.0 0.2 (0.01,0.02) 045 035 015 0.05

The nonlinear part of the dependenceFdfon Misofa 19 0.8  (0.002,0.008) 020 030 030 0.20
different origin. AsM grows, the equivalence between the 1 g5 0.2 (0.05,0.06) 050 030 010 0.02
sequences of jumps at different valueshdéfno longer re-
mains because of, for example, the effects of two neighbors

jumping at the same time which increases the stress on Bree is now increased back up BF so thatf(x,2)+AF
segment by B1/Z. This will tend to make stopping less =0, the segment will jump and could trigger restarting of

likely as a region can be restarted by motion in other regionﬁ,]e overall motion. We must thus ask how close to zero
that is caused by such multiple-neighbor jumps. As onef(X 2) can be '

l . .
would thus expect; decreasefasterthan linearly advl is If the last motion in any region were always via single

increased. . . :
. . neighbors triggering each other, then there would be a deple-
The focus on particular sites and whether they can bg, layer on stopping and macroscopic hysteresisf{"
retriggered by a given increase fnis also useful for under- “1-1/7=2 in our case with coordination. numb@i—4
= 4 - .

standing the hysteresis in the model of primary interest. , . -
. . S This would occur if the stress overshoots were not additive

crucial question about the local dynamics is: How close ca . ) . .
but instead such that any number of neighbors jumping

a segment be to movingithoutone of its neighbors having {'elded the same value of the stress overshoot as only one

; d o .
moved on the previous time step? We must g:on3|der' the mo%ad] But in reality, it is possible that any number of neigh-
recent time in thg past, say time one, a.t Wh.lc.h a neighbor oboring segment on a segment could jump at one time and
gzemseet%r:teggngfc;mﬁgeﬁgimﬁgsg' nfg\r/esd'rg?lt'icr:g’ zlg:ouitat?r-n then not again. Some results on the simultaneous hopping of
sero. the total force om is%hen ' @ number of neighbors are presented in Table Il. As such sets
' of simultaneous jumps can occur for anys Z—including
f(x,t=0)=F—f,(0)+0(0)<O0, (52) for n=Z—even as the system is stopping, there willrize
P depletion layereven for arbitrarily weak randomness and no
with /(0)=a(x,0) andf,(0)=f,(x(0),h[x(0)]) the initial h_yst_eresis in the inf_inite system limit. Neve_rtheless, for weak
elastic force and initial pinning strength, respectivelyalf ~ Pinning, the depletion layer will only be filled by simulta-

n out of theZ neighbors jump at time one, neous jumps of multiple neighbors followed by a jump of the
central segment that does not trigger further jumps of any of
f(x,1)=F—f,(0)+a(0)+n(1+M)/Z. (53 its neighbors. Although we expect that a local condition such

as this will always occur for some finite fraction of the seg-

If this is negative, thex will not move and, at later times, Ments, it appears likely that the potential seeds for restarting
the forcef(x,t>1)< —nM/Z as the stress overshoot will no With small increases if will be very rare for weak pinning;
|0nger app|y, thus Segmem will not be in the dep|eti0n this, indeed, turns out to be the case. ltis the prOXimate cause
layer. If, howeverx does jump at time two in response to its Of the long crossover lengths apparent in the size-dependent
neighbors’ jumping, i.e., if(x,1)>0, then the total force on distributions OfFihysl-

it at later times will be The above analysis gives a qualitative explanation for the
lack of macroscopic hysteresis. But to explain the observed
f(x,2)=F—f(1)+0(0)—1+n/Z (54)  dependence of the widths of the hysteresis loops on system

size, we must understand the density of states of segments
with a new random pinning forcé,(1). Aslong asf(x,2)  with small negative total force on them in the stopped con-
<0, this segment will not move further unless one of itsfigurations, and what happens after motion is triggered by

neighbors does. Thus this represents a possible local configune of these seeds as the force is increased. Quite generally,
ration when the system has just stopped. the continuous nature of the distributions of yield strengths

The conditionf(x,0)<0 implies, from Eq.(52) and Eq. and the discrete nature of the stress transfer means that the
(53 that f(x,1)<n(1+M)/Z. The maximum off(x,2) is  density of states for local properties should either be zero or
then obtained whefi,(1) is minimal (i.e., zerg and f,(0) be strictly positive. Specifically, from the above we expect
maximal (i.e., f'*); this yieldsf(x,2)<f*-1+n/Z. If the  that the density of states of the local forces will be positive at
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zero in the stopped state. To check this, we have computegrating over the properties of the avalanches.

the probability density per site,(F), that some motion is There are various measures of the size of an avalanche.
triggered with a small increase iR to F+dF in stopped Three of these will be of particular interest. Timmentm,
systems; this is normalized so as to include only thosef an avalanche is defined as the total motion that occurs:
samples that have not yet restarted macroscopidaly

though they might have already had some transient local _ _ .

motion). This rate of triggering of jumps appears to go to a m—}X: (R0 ater™ M(X)oetorel ®9
constant ag decreases t&. and exhibits relatively weak

dependence oF as the force is increased; we will present this is the quantity of primary interest for earthquakes. Alter-
the data later in the paper. natively, one can consider tharea a (in the two-

From the data for the distribution CF(T:hys' which ap- dimensional case of intergsthe total number of segments

. v i v atel density of ¢ that move at least once during the avalanche. Lastly, is the
proximately linearly alF¢, a constant density of states for linear size/” of an avalanche, one measure of which is its

triggering motion is perhaps surprising. The reason for thigjis meterdefined, for example, either via some weighted sum

must lie not in the seeds themselves, but in how they growy¢ gistances of moving segments from its center, or as the

In particular, very close t6- local triggering must be less giameter of the smallest circle that will enclose the ava-
likely to induce restarting than it does at higher forces. Inznche.

order to understand this, it is necessary to investigate the
avalanche dynamicgs.e., the transient motion in response to
triggering of one segment. Before considering this in the
context of the hysteresis loops and restarting, we analyze For the purely dissipative caskl=0, the scaling of the
avalanches that occur in the approach to depinning from beavalanches is related to that of the various quantitiesx:
low. F—Fgaval, and t—discussed in the context of the moving

phase. In particular, if an avalanche has a diameteits
VI. AVALANCHE DYNAMICS area will scale ag’%, its duration as’?, the typical maxi-
mum displacement—change lir—as /¢, and its moment as
In the preceding section we have seen that to understand
the hysteretic phenomena observed on cycling the force up m~ /9t (56)
and down, we need to understand how macroscopic motion . L . .
starts once it has been triggered by a local instability thaf*S 10Ng as the dimension is less than the upper critical di-
leads to one segment jumping. Before studying the case dp_en3|on,dcz4 for short-range interactions, the avalanches
interest for hysteresis loops, which involves initial conditionsWill N0t be fractal and hencgr]
that are set by the stopping process, we analyze the behavior di=d (57)
as the force is slowly increased from far below the depinning
transition starting from more generic initial conditions. We so that the area is a good surrogate, which we will use, for
will call this initial depinning In particular, we are interested the length scale of an avalanche:
in the behavior as the depinning transition is approached
from below. /~al, (58)
Even though there is no steady-state motion in this re- o N
gime, there can be local, transient motion in response tyVell below the depinning transition, most avalanches are
small increases if. Suchavalancheswill not persist indefi- ~ Small. But as the transition is approached from below, larger
nitely for smallF because the pinning forces in other regionsones become possible, although the distribution of their di-

will eventually dominate as long aB<F. (M), the— ametersis cut off by a correlation lengftthat, in the dissi-
aval pative limit, diverges aF ., as

A. Scaling

possibly history dependent—critical force on increading
In this section we investigate the dynamics that result 1
when F is increased adiabatically: initially by just enough o ——————
that one segment moves. This can then trigger other seg- (Fg l—F)”
ments to hop forward, whil& is held fixed until the ava- o
lanche stops. The same procedure is then repeatedRuntil with the same exponemtas determined by the scaling of the
=Fgava|. For an infinite system, this is defined as the forcephysically different characteristic length in the moving

above which the motion persists indefinitely in the absenc@®hase, the velocity correlation length. At the critical point in
of any further increase. In finite systems, there are somEhe dissipative limit, the distribution of avalanche sizes is a
ambiguities in how it is defined; we choose to define it as thd?OWer law:
lowest force at which all of the segments move during a

single avalanche. The primary quantities of interest below

the depinning are the sequence of avalanches and their sta-

tistical properties: numbers, sizes, durations, etc. More mac-

roscopic quantities, such as macroscopic responses to a smafld a similar relation applies for other measures of size; for
but noninfinitesimal increase iR can be determined by in- example, for the area, the exponent is simply changed to

(59

1
Prolj diameter- /]~ yr (60)
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k/d. Near the critical force, the distribution of the areas of
large avalanches has the scaling form

1 da ,
Projda]=p(a;F)da~ W7>(a/§d)?, (61) 10
aK

Poun(@)

wherep(a,F)da is thefraction of the avalanches that occur
within a small force interval aroun&, whose area is be-
tweena anda+da [7]. The scaling functiorP(y—«) de-
cays rapidly while fory—0, it goes to a constant.

The statistical “tilt” symmetry of the system that was
used earlier to yield the scaling law,v&# 2— ¢, can also be 1
used, via relating the polarizability to the avalanche produc-
tion rate and the distribution of their sizes, to show that for 1
M=0, i

1 2
K=d—;:d—2+§, (62) 107

as derived in Refl7]. The one crucial assumption is that the
rater (F) of avalanche production, defined ad E/ times the
number of avalanches per unit area of the system as the force
is increased by a small amount frdfto F+ AF, tends to a -
finite nonzero constant at the critical force. L
We now turn to an analysis of the data for avalanche 1 10 10° 10° 10*
statistics and properties of the avalanches: for the dissipa- a
tionless limit, to check the theoretical predictions outlined
above; and for nonzemy, to investigate the effects of stress
overshoots.

FIG. 15. (a) Log-log plot of the probability of avalanche araa
occurring within the intervalla/+2,/2a) as F is increased to

: . o FL (M) for f7®=0.5. The circl foM =0. f
An easy quantity to measure is tbemulative distribution o (M) fOT Tp77=0.5. The circles are foM =0.0, squares for

of all the avalanches as the applied force is increased t$/|:0.2, triangles forM =0.4, and inverted triangles fovt =0.6.
T S he open symbols represdnt 128 data, while the closed symbols
Fcava|(M)' This is given by

represent. =64. The asymptotic slope should beK,,/d; fits
yield: for M=0.0, —0.89+0.02; for M=0.2, —1.13+0.02; for
M=0.4, —1.25+0.01; and forM =0.6, —1.53+0.02. The dashed
curve is the result of a two-parameter fit to thé=0 data:
63) ga}*l(1+ Beund ™ M) Wwith Bgyp=—1.21+0.11; with Kgy also a
fitting parameterCa Xcum(1+ B, %), these data yielK,n,

Assuming that (F) approaches a constant 55_4:@ . the =0.83+0.02 andB,,,=0.53+0.01. (b) Same as irfa), but includ-
aval ing only the avalanches that were initiated with an applied force

Scallnlg _Iaws folr theh d|SS|pagc.)nI(_a§s_case¥lleld a power'lavéreater tharFé(M)—weII within the critical regime. The expected
cumulative avalanche area distribution with an exponent o lope is — x/d; for M=0.0, a best fit yields—0.37+0.02. For

unity, nonzeroM, large crossover effects are evident. The arés mea-
sured in units of the lattice constant squared.

: da
pesniarda= [“wedFpaFr(F) T~ ——da

afcum

Keum(M=0)=1, (64)

independentf the values of the other exponents. This thusthe theoretical expectation &f;,,,=1. If we restrict consid-
provides a good test of the general scaling theory that doesration to those avalanches that occur in the region close to
not depend on particular predictions for exponents. Althougtthe critical force in which most of the activity occurs, spe-
we do not expect the universal aspects of the avalanche steifically, within the applied force region of[F|
tistics to depend on Qetalls of the initial .condltlons, to ‘T"V.Q'd—O.lFZ J the apparent exponent is roughly the same,
effects that might arise from smoothening out rough initial aval o ,
conditions, we take the initial configuration to be approxi-Kcumzo'85i0'03 as shown in Fig. 18). Before trying to

mately flat: specifically, the initiafh(x)} uniformly distrib- understand the apparent discrepancy of this with the scaling
uted in the interval0,1] prediction, we consider the statistics of avalanches that occur

in the critical regime specifically, only those that occur for
F>(FL(M)). The distribution of these also decays as a
power of the area, as shown in Fig.(bp But the power is
We first analyze the data fdl=0.0. In Fig. 1%a), the  much smaller: 0.3%0.02. Because the correlation length
cumulative avalanche area statistics are shown; a fit to ththat would cut off the avalanche distribution is of the order
data on a log-log plot yields an exponent somewhat less thaof the system size in this regime, the distribution should

aval

B. Dissipative limit
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essentially be that of critical avalanches with an exponent
«/d. We thus obtain an estimate

k(M =0)~0.74+0.04 (65)

to be compared with the theoretical expectation«cfd
—2+{¢{=d-1/v equal to{ in two dimensions. We see that
the agreement with our data fdris quite good[ {(M=0)
=0.72+0.02 as the manifold comes to a stop from the mov-
ing phasé suggesting that the basic scaling scenario is cor-
rect.

There are various possible sources for the substantial dis-
crepancy of the apparent cumulative exponent from unity. As
can be seen in Figs. &b, the rate,r(F) of avalanche
production forM =0 increases sharply as the critical force is
approached. Although it does appear to go to a finite con-
stant, as it should on general grounds sin€) is a locally
determined property, the precursor increase will bias the cu-
mulative statistics as there are more avalanches produced
near the critical point than further away, and these are the
ones that have possibilities of being large. This will tend to
put more weight in the large avalanche part of the cumulative
distribution, thereby decreasing the appat€gt,,. [The ex-
treme limit of this weighting of those near the critical force
would just yield the critical exponemnt/d instead, as in Fig.
15(b).] In particular, if there is a cusp singularity in the rate

of avalanche production ag_":la\,m with an exponent, FIG. 16. (a) For initial depinning, log-log plot of the probability
then this would induce a multiplicative correction to the cu-of an avalanche aremoccurring in the intervala/2,v2a) asF is
mulative avalanche size distribution of the form 1 increased td:lavaI(M) for f7*=1.0 andL=128. The open circles
—C/al') which could complicate interpretation of data. are forM =0.0, the open triangles dendié=0.4, the stars repre-
In general, we expect there to be corrections to scalingentM=0.8, and theM =1.0 data are denoted bys. The fitted
arising from weakly irrelevant operators at the RG fixedslope forM=0.0 is —0.90+0.01; forM=0.4, —1.02+0.02; for
point that governs the depinning critical behavior. In terms ofM=0.8, —1.08+0.02; and forM =1.0, —1.14+0.02. The dashed
areas, the leading irrelevant eigenvalu@~ (4—d)/3 [23] curve is a fit to thevl =0 data that includes corrections to scaling as
would give corrections of the form™ Keum(1+Ba~ 0/d) with in Fig. 15a); yields a correction to scaling coefficient 8=
6/d~% in two dimensions. Such corrections would dominate~0-97=0.01. (b) Same ag@), but including only the avalanches
over those from a cusp in the avalanche production rate urfat were initiated with an applied force greater tiieyiM), in the
lessa<0.5. Indeed, the simplest expectation is that the CUSISrltlcal region. Comparisons with data taken on stopped samples

in the avalanche prOdUCtion rate is controlled by exaCtly thiéstarting WithF>Fé and IoweringF until the manifold stops before
correction exponent increasing again For the initial depinning, the same symbols as in

(a) are used. For the stopped samples, the right triangles are for
M =0.8 and the left triangles fov =1.0. ForM =0, the slope is
expected to be- x/d=—¢/d~— %, a fit yields —0.39+0.02. For

. . . . M >0, the data do not fit this and crossover effects are evident. For
corresponding tar~0.5. Afit to this form withr (F¢o) and comparison, dashed lines are shown with a slope-6f9, which

:Zco f|xed|, andfCr afnd Ov ?(s t_he free parameters, Y'_e|d3 a corresponds to the measuredmulativeavalanche area exponent
ower value ofa. If we take into account a correction 10  for the M=0.0 case. The areais measured in units of the

scaling by fitting the log-log plot of the cumulative ava- |agice constant squared.

lanche area distribution with a form that includes the leading

correction[shown in Fig. 1%8a)], the cumulative avalanche total system area; this is evident in Fig.(@6in which data

size exponent is changed from 0:80.02 to 0.83-0.02, i.e., for L=64 andL =128 are shown. These effects combine to
in the wrong direction. But if the data are fit with the ex- make the real uncertainties in the exponents here, and prob-
pectedK .,,=1 and am~ ' correction,—a fit with the same ably for other quantities, substantially larger than the appar-
number of parameters as an undetermined power law with nent uncertainties.

correction—the inferred correction to scaling amplitude is Note, however, that the useful range of length scales
B~ —1.2+0.1, not unreasonably large. If this were the ac-available for avalanche data and other quantities for which
tual form of the distribution, some downward curvature atone is trying to extract infinite system results from finite
the largest sizes would be expected as seen in the dashsegstem data are, because of the crossover when the length
fitting line in Fig. 19a). A competing tendency, however, is scales approach the system size, less than is available for
the flattening of the distribution at areas of the order of thequantities, such as the variance of the critical forces, that are

r(F)~r(Feo)—Ci(Feo—F)"”, (66)
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(b) FIG. 18. Log-log plot of the mean moment of avalanches with
area in the intervala/\2,2a) for L=128 andfy®=0.5 using

10° | 1 same symbols as in Fig. @@. The expected slope igif-¢)/d. A
linear fit (solid line) for M =0.0 yields 1.22 —0.02. For otheM,

the same exponent fits to within one standard deviation. The dashed
10° | ] line is a fit including corrections to scalingCal¢*9/2(1
+Aa '®) with C and B,=—0.91+0.02 fitting parameters. The
areaa is measured in units of the lattice constant squared.

Median Duration(a)

value of &' from a naive extrapolation of the-4e expan-
sion, althougte is likely to have higher-order corrections in
L 10 10 0 € even if  does not. Referencl9] shows thatz=2—3¢
a —0.0432%%~1.38. Thez extracted from the avalanche dy-
namics agrees quite well with this value without any correc-
FIG. 17. (a) Log-log plot for the mean duration of avalanches tions to scaling.
whose area is in the intervab/\2,\2a). All data are forfy™ The roughness exponefitcan be extracted from theo-
=0.5, L=128. TheM >0 curves have been shifted along vertical ment as a function of the arean~a(®*9/d_ Factor of 2
axis for clarity by multiplying by successive factors of 3/2. The |ggarithmically binned histograms are shown in Fig. 18; for

asymptotic slopes should k#d. Linear fits for bothM=0.0 and  the dissipative case these appear to yield a rather small value
M =0.2 (not shown yield z=1.40+0.02. The dashed line is a non- ¢

linear fit that includes corrections to scaling; fier=0.0 it yields
z=1.52+0.02 with correction amplitude8,=—0.58+0.05; see
text. Linear fits for thevl =0.4, M=0.6, M=0.8, andVl = 1.0 data {avalM=0)~0.44+0.02. (69)
yield values ofz/2 of 0.69+0.02, 0.76:0.03, 0.69-0.01, and
0.68+0.02, respectively(b) Log-log plot for themedianduration
avalanches with area in the interjal/\2,.2a).-

However, there is definitely upward curvature observable at
the larger sizes and a fit wit= 2 and ana™ '/ correction to
scaling(same number of parametgis somewhat better and

intrinsic properties of finite-size systems. Thus we might ields a correction to scaling amplitude of order unity, more
hope to have more confidence in exponent estimates exX g amp Y,

tracted from such intrinsic finite-size properties. In Figs_preC|ser—0.91. Note, however, that, as for the distribution

P of avalanche sizes, such fits suffer from finite-size effects.
16(@) f"‘”dn};‘@ we plot the same asin Figs. @ and 1%b) A roughness exponent can be more directly extracted
but with f *"=1.0 for comparison.

from the statistics of the roughness of the manifold exactly at
1. Durations, moments, and roughness the critical force,Fcaval. In Figs. 19a,b, fits to the spatial

From the avalanche data, specifically for theationsof =~ POWer spectrum|h(k)|?), yield {(M =0)~0.65+0.02 and

avalanches, one can determine the dynamic expanevith ~ 0-69+0.02 for f1*=0.5 andf*=1.0, respectively. These
nonfractal avalanches, the duratierwill scale asa?d. In values are close to those observed for systems that have

Fig. 17@ we plot the mean duration of avalanches whoseStopped after a decrease foffrom the moving phase.

area is within a factor of/2 of a as function ofa. The slope The apparent discrepancy between the scaling of the typi-
of the log-log plot yields cal dlaplacement of avalanches and the roughness at the crm—
cal point is somewhat troubling, although, as we have seen, it

z(M=0)~1.40+0.02. (67) can readily be accounted for by corrections to scaling. This

sort of discrepancy has been seen previously in simulations
As for the avalanche statistics, we can attempt to take intef manifold depinning25]. In that case, the roughness ex-
account corrections to scaling by fitting to the fofm(a)) ponent at the critical force was similar to ours, but the dis-
~Ca??1+B,a 3. This three parameter fit yields=1.52  placement of the avalanches scaled witamer exponent.
+0.02 andB,= —0.58+0.05; this value ok is closer to the The fact that the discrepancy can be in either direction sup-
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< [} . .
v v ¥y the dotted lines are merely guides for eye.
v(M=0)~0.82+-0.04 (69
1 o
10

for f¥=0.5 andv(M =0)=0.78+0.02 for the stronger pin-

ning. The scaling law,+ 1/v=2 is consistent with the in-
FIG. 19. (a) Log-log plot of the square root of the power spec- ferred exponents at the level of a few times the apparent

trum contrasting the system just below the critical force on initial error bars.

depinning FL ,(open symbol with its behavior when it has “just In spite of the discrepancies noted above for the typical

started”: imr;védiatew after every segment has moved during alisplacement of avalanches and their cumulative statistics,

single avalanche event ﬂlaval (solid symbols. Each set of data overall the data for avalanches in the dissipative limit appear

represents an average over 1000 samples, and the curves have béepe consistent with those obtained from the moving phase

shifted along the vertical axis for clarity. The stars arsldenote ~ and with theoretical predictions. In particular, if one includes

f7@*=1.0, the other datd]®=0.5. For the data just belowlaval' corrections to scaling of the anticipated form, all the data are

the fitted roughness exponents, are indicated by the uppermost Consistent.

solid lines: Withfg‘aX:O.S (0.71-0.05 forM=0.0, 0.55-0.04 for

M=0.2, and 0.020.02 forM =0.6); with f **=1 (0.57+0.04 for C. Avalanches with stress overshoots

M =0.8). The lower solid curves are fits with corrections to scaling We now turn to avalanche properties fdr>0. Because
of the forme,k~*#3)(1+B,k*3), with fitting parameters, and prop :

B,=—0.006:0.002 for M=0.0, 0.034-0.007 for M=0.2, and the distribu'_[ion of ava_llanche sizes will turn out to raise the
0.283-0.009 for M=0.8. For the just started data, witH!™ most questions, we first study the duration versus area and
=0.5, inferred{’s are 0.65-0.02 for M=0.0, 0.65-0.02 forM moment versus area.
=0.2, and 0.620.02 forM =0.5 (not shown; and 0.72-0.03 for )
f¥=1,0, M=0.8. No fit was attempted fob =0.6, {T*=0.5. 1. Durations and moments
The error bars are achieved in the same way as described in Fig. In Fig. 17, the mean and mediaurationsof avalanches
7(a). (b) Same aga), but for comparison of amplitudes: the curves whose area is within a factor of2 of a are plotted for
have not been shifted and a narrower ranggkpfs shownk isin  variousM. Except possibly at the largest sizes, the data look
units of the inverse of the lattice constant. remarkably similar to the data fo =0 and an exponent of
z~1.4 would be inferred from each. In Fig. 18 the mean

ports the belief that it is due to corrections to scaling rathemomentsare plotted; again there seems to be remarkably
than a difference between the two exponents, as had bedittle dependence oM. For both the duration and the mo-
conjectured in Ref[25]. ment data, not only do thexponent$ook similar to those at

As was done for the critical force defined from the mov-M =0, but the amplitudesdo also. Given the relatively
ing phase, we can also extract tberrelation length expo- strong dependence of the velocity amplitudeMdiiSec. V),
nentfrom the finite-size scaling of the variance of the critical this is particularly surprising.
force. In Fig. 20, the data are shown and exponent estimates An amplitude that would be expected to be proportional
of 1/v(M=0)~1.22+0.04 and 1.2& 0.02 extracted from to the time-length scaling factof;, can be extracted from
the data for, respectivelyt;*=0.5 and fj*=1.0. These the mean duration of avalanches as a function of their area.
yield Although these would be expected to differ by an unknown
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FIG. 21. Log-log plot of the time evolution of the average mo-
ment of avalanches initiated betweBp(M) and FlavaI(M) (within
a small force interval The normalization factor is the number of
avalanches that are still moving at timeThe light solid line dis-
placed slightly below theM=0.0 curve is the result of a least
squares fit to a power law whose exponent yields an exponent of
1.63+0.01 in the scaling regime. In the quasistatic scaling regime,
the exponent should b {d)/z. For all datal =128. For clarity,
(Momentt)) for M =0.2 has been multiplied by 2; fod =0.6, the
multiplicative factor is 4, and for tht! =0.8 data, it is 6. 107

10

Paum(@)L"*"

——— L=64 X
- - L=32 T
——- L=16 \
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numerical factor from those extracted from measurements in B

the moving phase, the ratios might have been expected to be
universal. The amplitudé&??~1.33 for M<0.4 andA®"®
ma: H H
~1.44 forll\/l.= O'G'fp X:.O'S' It is apparent that these ampli- area distribution during initial depinnindgb) Scaling plot of the
tudes exhibit _substantlally less dependence on parameters . yata with' = 1/2.
than do theA; inferred from the moving phase. This lesser
dependence is also observed in the time evolution of the
average avalanche momefftig. 21). Although at first this =1 with corrections to scaling. More strikingly, there is no
seems troubling, it should, perhaps, not be: even in the atiropoff seen for large sizes even with=1.0.
sence of overshoots, the properties of avalanches can dependThe dependence of the avalanche distributions on stress
on how the system is prepared. Nevertheless, the differenc&yershoot is more marked if we restrict consideration to ava-
here are probably related to some of the more puzzling diflanches that occur for forceabove E, Figs. 13b) and
ferences that occur in distributions of avalanche areas antié(b). As mentioned earlier, foM =0 these yield an expo-
distributions of critical forces; these we discuss further benent, expected to be equal tdd= /2, of 0.38-0.03. But
low. asM increases the distributions appear to follow roughly the
dissipative behavior for small avalanches only to fall sub-
2. Distributions of avalanche area stantially below it for large ones. This difference is most
) ) pronounced for larg®: the largest avalanches are about an

In contrast to the properties of avalanches of a given aregyder of magnitude rarer favi=0.4 than forM =0 for the
th_edlstrlbutmnsof avalanche sizes de_pend etronegMnIn weaker pinning and similarly foM =1.0 versusM =0 for
Figs. 132) and 16 the cumulative distributions of all ava- the stronger pinning. In contrast to the data for the cumula-
lanches are shown fdi>=0.5 andf J**=1.0, respectively: tive numbers of avalanches, these data are suggestive of typi-
the data are straight on a log-log plot over a substantial ranggal crossover behavior: from dissipative behavior for small
of areas but the slope appears to vary continuously With sizes to something else for large sizes, with a crossover
for f7®=0.5 from 0.89-0.02 forM=0 to 1.53-0.02 for  length that is long for smaM and shrinks a#1 grows. Note
M=0.6 and forfpmale.o, from 0.96:0.01 for M=0 to that this form ofM dependence of a crossover length is what
1.14+0.02 forM = 1.0. At large areas, of order 10% or so of would be expected iM were arelevantperturbation about
the system area, the distributions of avalanches fall off inthe dissipative depinning fixed point. But we must exercise
creasingly more rapidly a8 increases. Whether this is an caution before drawing such a conclusion.
intrinsic effect or a finite-size effect is an important issue to  From the data of Fig. 15 fof’g‘a":O.SM =0.6 it appears
understand. that there may be some interesting size dependence to the

Data taken for stronger pinning;=1.0, are shown in  crossover: these data for=64 fall somewhat below those
Fig. 16@a). Surprisingly, these cumulative data depend farfor L=128 for large avalanches. One can test whether the
less onM over the range shown. Although the apparent excrossover is a finite-size effe¢in contrast to one arising
ponent varies slightly, all are probably consistent With,,,  from putative relevance d¥l) by plotting the data versus the

FIG. 22. (a) Finite-size scaling plot for cumulative avalanche
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scaled areaa/L?: this is done in Fig. 2@) for a wide range '

of system sizes witiv =0.6. It can be seen that the rollover :m=ggip:”=gg
at large areas doesot scale simply with system size. But 10 AM;Ojejf:max;oﬁs -
P

neither is it consistent with a system-size-independent cross- * M=0.8,1,"=1.0
over: there is much less than the expected factor of 64 dif-
ference in the crossover value afL? betweenL =16 and
L=64. A plausible intermediate conjecture would be that the
crossover scales as a power Y of system area: this could
arise fromdangerous irrelevancgf M. The plot in Fig. 22b)
versusa/L appears roughly consistent with such a conjecture
with Y ~0.5. But this requires the introduction of an extra 1 1'0 100
scale and exponent into the interpretation of the data. An- L

other interpretation, one that does not require such additional

hypotheses, is that systems Wﬁgﬂaxzo_&M =0,6 are in the FIG. 23. Log-log plot of the maximum width of the manifold
midst of some type of crossover for the range of system sizelgist below the initial depinning aﬁml. Data are averaged over ten

investigated. As discussed later, we believe that this is probsamples. For thé1=0.0 curve the slope is 0.700.03; for theM
ably the case. =0.2 curve it is 0.56 =0.02. For theM =0.6 curve, the result of

the least squares fit is a slope of 0:228.06. And finally, for the
3. Roughness from avalanches M =0.8 curve the slope is 0.640.06.

Wmax

The absence of large avalanches in the presence of sub- S .
stantial stress overshoots f[ﬁ'axzo_5 Suggests that, r|ght up at a diameter of Orddrl_Y from its distribution in the dis-
to Fg , the manifold should be less rough on long |ength5|pat|ve case. The largest avalanches that occur would
aval

1-Y)¢ vieldi
scales than in the dissipative limit. This is indeed found to be([:r:gngz] elro CI?IIB{nZi/eZg o:ﬁ;er c?ric;ssove} z\':‘lg '?3 :VZT;?ict))futi on
the case: In Figs. 18) and 19b), the spatial power spectrum o '

f the rouahn is shown function of wave vector i ecaying as a larger power law of the area for large ava-
orthe oTug €SS 1S shown as a function ol wave vector Jus nches, the apparent roughness exponent extracted from
below Fcavar In the dissipative limit, one obtains a power

Wpax Would be somewhat larger. But if the largest ava-
law that is consistent with a roughness exponenf®0D.65  |anches were qualitatively different from dissipative ones —-
+0.02 for fi®=0,5 and{=0.71+0.05 for f®=1.0 down  perhaps like failed nucleation bubbles witW~L—this
to the smallest wave vectors. In contrast, f@‘”‘:O.S, the could lead to arincreasedapparent roughness exponent for
spectra with stress overshoots are found to become flat &v,,,,. Unfortunately, at this point, it is hard to conclude
long length scales; this is particularly pronounced at themuch from this set of data except that something peculiar
larger M. Although we have not studied the system-size deseems to be going on fdi'®=0.5M =0.6. But peculiarity
pendence of these spectra in detail, Mr=0.6 the rough in this range of parameters appears also in other quantities.
magnitude of the wave vector at which the crossover from
power-law rough to f_Iat occurs—as seen in the blowups of 4. History dependence of roughness
the small|k| regime in Fig. 18)—is similar to the wave )
vector inferred from the inverse square root of the system The data aFl _for both the spatial power spectrum of
area at which the drop-off in the avalanche area distributionshe roughness and fW,,,, should be contrasted with those
occurs. But to again confuse the interpretation, different bein the steady-state moving phase, Fi¢p)7and with those in
havior is once again seen for the stronger pinnifgl?™  the “just started” moving state that has not reached steady
=1,M=0.8, samples: these show apparent roughness expstate, Fig. 18a). The latter two show power-law roughness
nents that are only slightly smaller than in the absence ofith exponents that are consistent with being univeirsae-
overshoots and the roughness has less of a tendency to sapgndentof M and independent of whether the manifold has
rate at small wave vectors than the weaker pinning data. been slowly stopped from the moving phase or has barely
Information can also be garnered from the system-sizetarted moving on initial depinning—albeit with a velocity
dependence of the average maximum widthy,,,  dependent cutoff at long scales in the latter case. In contrast,
=(max(h(x) —h(x))|), of the manifold aﬂ:]:aval_ In the dis- the data just belovlz'*laval exhibit roughness that depends sub-

sipative caseW,.~L¢ as expected for simple scaling. The Stantially onM. . .
stronger pinning samples witrg‘ax=1.0M=0.8 show be- The trends with changing/ are also different for the

havior for W, that is relatively similar to the dissipative StopPped sample@t F;) and the samples at initial depinning

- 1 i i
case, consistent with the spatial power spegingk)?|). For (Fcava)' When the motion has been stopped from the moving
the samples witH[=0.5M = 0.6, however, much weaker phase, the roughness is slightly larger for larlyerat least
possible reasons that this peculiar behavior for these paranfoughness in systems that started flat and fautreased to
eter values might occur. Fiaval tends todecreasewith increasingM because of the

If, as appears to be the case for samples V\fiﬂ‘?x rarity of large system-roughening avalanches with this his-
=0.5,M=0.6, the avalanche production was sharply cut offtory.
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TABLE Ill. Comparison ofF (M) andF! (M) for L=128. on the strength of the random pinning. But collectively they
do suggest a plausible scenario involving a subtle crossover
M P (Fo) (L) {valFUM)}Y* {vafFl (M)]}** as a function of length scale. For smallone would expect
dissipativelike behavior for small samples as the effects of

8:2 8:2 _8:%;3 _%917()%5 8:888:' %%%%6 small overshoots will need a substantial range of length
02 05 —0.1404 —0.137 0.0004 0.003 scales to bw!d up. At the other extreme, the data for |Afige

: : ' : : ' and strong pinning suggest that very large samples show be-
04 0.5 —0.2078 —0.199 0.0005 0.002 havior characterized by treameexponents as the dissipative
06 0.5 —0.2866 —0.267 0.0004 0.005 limit, but with very different amplitudes. In between, atlsin
0.8 1.0 —0.0665 —0.060 0.0006 0.009

dependent scale, there must then be a crossover from one to
10 1.0 -0.1513 -0.141 0.0006 0.007 the other amplitude. On, for example, a log-log plot of the
rms variations on:gaval versus system size this would show

up as a regime of slope i,/ followed by a crossover regime
! of lower slope to an asymptotic regime of slope again. 1/
We have seen that there appear to be interesting diffeifhe intermediatéVl samples could then appear to have sub-
ences between the physics of avalanches in the dissipativatantially different scaling by virtue of being in the crossover
limit and those with stress overshoots. In the dissipative caseegime over the range of length scales studied, In the follow-
the critical force,Fiaval, defined from the first system-sized ing subsection we see how such crossover behavior might

avalanche, and thaE., defined by when steady-state mo- arise from the production and development of avalanches

1C
tion ceases, are essentially the same; the latter being slightRnd the effects each has on subsequent ones.

larger and with a somewhat smaller variance because of the

way it is defined(the system stops in a somewhat anoma- 7. Avalanche production and development
lously strongly pinned regionsee Table lIl. With substantial ~ \ye paye seen that with stress overshoots, static configu-
stress overshoots, in contrast, while the lowest force at Wh|cpat

finite-si : h i ed lanch ions exist in finite-size samples at forces that are substan-
a m;\le-'s:llzeMsystr:an:j.Cta% tgve ?FsTys emt-s%e ¢ avfa ?QC € f%lly above[on the scale of variations d¥.(L)] the force
roughly F¢(M), the distribution o Caye EXIENTS TATTUTNET Fé at which the whole system can move. This suggests that

up into the region in which, once the motion starts, it iSjn this regime there may be a change in character of the
extremely unlikely to stop again. From F|g 20. itis seen thatyy 51anches as they become large. In contrast to bﬂbw

for f7®=0.5 andL =128, the rms variations oF;__ are  \here all avalanches will stop, if an avalanche abéve
about a factor of 4 larger fakl =0.4 than those foM=0,  becomes larger than some characteristic size, naively, per-
and forf7=1.0, they are a factor of 10 larger f4=0.8  haps the velocity correlation length,(F) in the moving
than for M =0, even though the corresponding rms varia-phase, it will run away and the whole system will move. This
tions of F}: hardly differ. This factor of 10 difference iR will strongly affect the distribution of avalanche sizes in this
= Fg corresponds crudely to a factor of k96 difference in  regime, yet it might not have much effect on the durations or
length scale, suggesting that some scale of the order of @oments of those that doot run away: the evidence dis-
sixth of the system size might appear for the initial depinningcussed above is that the durations and moments of these are
history Withfrp“aX:]__O,M =0.8. Recall that such a scale was indeed rather similar to the large ones that occur with

5. Variations of F|__

also apparent in the distribution of the forl§éhySt at which :O'I;h tes (F) of lanch duction &is i d
. . e ratey of avalanche production dsis increase
the system restarts after being stopped from the moVm%diabaticalIy are shown in Fig. 25 for a variety of values of

phase.
The data for the rms variations Eflaval are shown in Fig.

20 and histograms of the distributions in Figs(&424(c).

M andfg‘ax. These are normalized by the number of samples
that are still pinned, i.e., still below thdFrlaval at the giverfr.

Note the strong deviations from simple power-law behavior"? contrast to the d|SS|pTat|ve I|1m|t for which(F) increases

of the intermediate Mdata for the variances. Surprisingly, Sharply withF asF—F; ~F¢, the data for nonzerd/

the largeM samples withf B“ale,o have size dependence of show a peak in the avalanche production rate somewhat be-
the variance of |__that is, except for the overall amplitude, 10w F¢ and then a marked decreasefaicreases into the
quite like that of the dissipative limit. This again recalls the "€9ion in which some samples have self-sustaining ava-
puzzling behavior that was seen for the distribution of ava-lanCheS. and beco”.‘e erlnned. For the st.ron_gly plnneq SYys-
lanche areas: the strong pinning larle systems appear tems this suppression is strong; the behavior in the region in

more similar to the dissipative limit than do intermedide Wh'c_h r(E) IS small is shown blown up m_the f|gur_e. Note
ones with weak pinning. that in this regime the avalanche production rate is two or-

ders of magnitude lower foM=0.8 andM =1.0 than for
M=0.
Although we have not studied it in detail, this decrease in
The data we have presented on the statistics of avalanchasalanche production rate is presumably related to the deple-
and the roughness they induce show complicated dependentien of close-to-unstable sites in regions in which moderately
on the system size, on the magnitude of the overshoots, arsized avalanches have already occurred. This is analogous to

6. Crossover behavior
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FIG. 24. Distributions oFgMI with, from left to right in each plotl. =128,64,32,16(a) M=0.2f™=0.5. (b) M=0.6f*=0.5. ()
M =0.8f1"=1.0.

the depletion that occurs after the whole system is stoppedway scale is proportional to system size in large samples. In
from the moving phase. Such depletion will suppress bottihe dissipative limit, the last of these behaviors is observed
the density of “seeds” of avalanches and the probability ofwith a proportionality constant close to unity. In contrast, in
them becoming large. Most new avalanches would be exthe artificial model discussed earlier with overshoot stresses
pected to occur in regions that have not yet had substanti&lt for the duration of an avalanche, once all segments have
sized avalanches. The exception to this are avalanches thaoved at least once, an increase of the forceMWZ is
get up enough steam that they can run through the depletetteded to cause another avalanche and when one does occur
regions. Once an avalanche does this, it will continue growit is likely to run away after its diameter becomes of order
ing until it sweeps through the whole system and becomethe velocity correlation lengt, of the moving phase at that
self-sustaining. As the chances of this happening will depenébrce. Why this is the controlling length scale is explained in
on the properties of various regions of the system, how largéhe following section.
it has to become to runaway is likely to be subtle. As discussed in the preceding subsection, the peculiar
There are three possible behaviors for the runaway prodata for avalanche distributions, etc., fﬁg’ax=0.5M =0.6
cess of large avalanches in the regime abE\%e (i) That  appear to indicate that in the regirRe> Fé the cutoff for the
there is a finite sample-size-independent length s&a(#1) distribution of avalanche areas grows as a power of the area.
above which avalanches typically run away;) that the  This would suggest the second scenario as such a crossover
scale at which runaway occurs grows with system size, buin the distribution is presumably associated with a tendency
as a decreasinfyaction of system size; ofiii ) that the run-  of larger avalanches to run away. In contrast, the avalanche
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FIG. 25. (a) Avalanche production rate during initial depinning. From top to bottom of the left pgﬂ?fi:O.S, areM=0.0, M=0.2,
M=0.4, andM =0.6. The solid line fit to thél =0 data is 2.35 3.3(—0.0785- F)°°. The dotted line is a fit in which onl¢, [from Eq.
(66)] is allowed to vary butx is fixed at 0.5; note there is only one fitting parameter for the latter. In the rightfgl?i‘t,:l.o, top to bottom:
M=0.0,M=0.4,M=0.8, M=1.0. (b) Blowup of (&) near the critical region fof;*=0.5 data. Up arrows along the horizontal axis indicate
the medianFiaval, while down arrows indicatéF ). (c) Blowup of (a) for fg""x=1.0 data.(d) Comparison ofr (F) for initial depinning
(insets with that in the hysteresis loop. Note that for samples Wwith128 (shown) the hysteresis loops are considerably narrower than their
naive widthM/Z.

distributions observed in this regime with strong pinningundergone macroscopic motion. We now return to the related

suggest that there may be a crossover from dissipativeguestion of how the manifold restarts after it has been

critical-like behavior for smaller sizes to dissipative- stopped by a slow decrease of the force from the moving

cumulativelike behavior for larger sizes, with the crossover phase.

occurring fory/a of order 0.1 0.3_; if this fixed fractionof As discussed earlier, the stopping process leaves behind

L persists for larger sizes, it would support the third scenarioan at-least-somewhat depleted region of small local forces.
In the following section we develop these ideas furtherthis means that as the force is increased back up, the rate of

and test them in the context of the restarting of the manifoldyy,glanche productiom,(F) (which in an infinite system is

after it has come to a stop from the moving phase. just the probability density of the local forces at Zenwill

be small. In Fig. 2&), r (F) is plotted as a function df for

manifolds that have previously been moving. Even with rela-
In the preceding section we studied some aspects of hodvely strong pinning,f**=1.0, it is seen that foM=0.8

the system becomes depinned when it has not previousignd M=1.0 the avalanche production rate is almost three

VIl. DYNAMICS OF NUCLEATION
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00— T @O T the overall motion is of the order of the velocity correlation

max _ length&,(F) of the moving phase at the same force. This can

M=02f =0.5 | M=0.2, ] STA . .

el | ™15 be rationalized from the behavior of the moving phase.
= p 4

- L=64 At a force that is only a small amoufiaboveF .,

200 | _ | f=F—F., (70)

the moving phase is strongly fluctuating on scales smaller
Bor 7 than its correlation length,~1/f”. On scales smaller than
this, there is substantial starting and stopping and the motion
100 L 11 ] is fractal. Given theM independence of many of the quali-
tative properties of the moving phase, the motion on scales
smaller than¢, is probably qualitatively indistinguishable
from a finite dissipative avalanche. Thus a reasonable guess
is that an avalanche from the stopped statievétl be fractal
ol teeeinecandlbl o L clAENIIHN on small scales and is not likely to run away unless it be-
-0.16 -0.14_-0.12 -0.1 0.08.44 0465 049 '0515 comes of ordeg, (f). But if it does become bigger than this,
FchTyst ChystT it will “think” that it is part of the moving phase and its local
velocity will be unlikely to fluctuate to zero. As its local
FIG. 26. Distribution ofFlhyst’s with M=0.2 andL=64 com-  motion continues, it will impart higher stresses to neighbor-
paring fy®=1.5 andf7<0.5. The rms of . for the these param- ing regions and its size will grow. With_its interior moving at
eters are 0.45370.0009 and-0.139+0.001, respectively. The up approximately the steady-state velocityF), we would ex-
arrows on the horizontal axis indicat€&:)+M/Z, the maximum  pect the diameter of the resulting “bubble” to grow linearly
o in time.

In order to test this hypothesis, we investigate in our
orders of magnitude lower than its typical magnitude in asimulationshow the manifold begins to move when the ap-
never-moved dissipative system. YetF) is relatively flat ~ plied force is increased after it has been stopped. fif6f
over the regime in which almost all systems will restart: =0.5 andM =0.2, it can be seen from Fig. 26 that restarting
from F. to FL+M/Z. Note, however, that in the upper end will typically occur athhyst= Fl+M/Z by which point the

of this range, at least for the data we have takenlfor steady-state velocity of the moving phase is already substan-

=128, there are no samples still pinned. For smalletja| and its correlation length short. In Figs.(8%)) the tem-

samples, the range over which the distributionFQEyst ex-  poral evolution of the restarting process is shown; we see

tends is broader, i.e., fronﬁé to |:(l:+ M/Z. Note that for all  that it isnot fractal, but looks more like an expanding nucle-

these strong pinning samples, the range over which the reition bubble as occurs after supercooling through an equilib-

starting occurs is two orders of magnitude larger than thdium first-order phase transition. After a short initial tran-

width of the distribution ofF_ . sient, there is a front that propagates outward from an initial
seed in a roughly deterministic manner. We observe that the
radius of the nucleation bubblg(t) grows approximately

A. Distribution of restarting avalanches linearly with time so thaR(t)=ct, ¢ thus being an expan-
Although some fraction of the samples of size-128  Sion rate. The interior of the bubble is, as expected, moving

will restart the first time a site is triggered, by no means allat roughly the steady-state velocit(F) of the moving

will and, in general, there will be a distribution of avalanche phase[Note thatc is a speed in thepatialrather than in the

sizes before restarting. In Fig. 16 the distribution of the areasdlisplacementh) direction, which isv.]

of these avalanches is shown for the same parameters as The expansion rate can be estimated from the time depen-

above. The data are somewhat sparse due to the small nugience of the spatially averaged velocitft) by assuming a

ber of avalanches that typically occur in a given sample, yetircular bubble of radius(t) =ct, so that

some are observed out to about a tenth of the system area.

Over the observed range, these avalanche distributions are, m(ct)’—

perhaps surprisingly, quite close to power laws, with expo- v(t)~ L2 v- (71)

nents close to 0.9. This should be compared with the much

smaller avalanche area distribution exponer®2~0.39 of |n Fig. 28 we thus plot

the critical region avalanches in the dissipative limit. But the

measured exponent is close to that of tuenulativedistri-

bution of dissipative avalanches. c(t)z(

P
(Fchyst )

Prob

2\ 1/2
v(t)L ) .

v mt?

B. Bubble nucleation as a function of the time after the restarting was triggered,
We conjecture that in the stopped states the length scafer several differenM’s andf J**s. In general, at short times

above which an avalanche is likely to run away and restarafter nucleation, fractal growth that is like that in a dissipa-
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FIG. 27. Dynamics of nucleation: segments that are moving at each of the indicated aft@snucleation are shown.

021603-30



DEPINNING WITH DYNAMIC STRESS OVERSHOOTS ..

t2)]1/2

v(t))/ (v

[

—; 2)] 1/2

v(1))/(mvt

(%

FIG. 28. (a) Effective bubble growth ratec(t)=(L?%v(t)/

, as a function of time averaged over eight 128 restart-
ing samples. The solid line isLf/7t?)Y2 the long-time steady-

71_?[2) 12

0.8

0.6

107"

- M=0.6,f,""=0.5
- M=0.2,f"™=0.5

M=0.2,£™1.0

M=0.8,,""=1.0
L=128

100 200

300

400 500

t
(b)
— — —
R L=128
x\
i
NS \\\,\\:&
Eosal s i
[ \~\‘~>}\ ____________ .
¢ S--maao- N
[~ Woamemr=m " 2
~~C b \
~< \\\ PN

1

----- M=0.6,f "'=0.5 Ny rserebedy
F oo M=02£™=05 Y
[ ——— M=02{""=1.0
[ ——= M=08f""=1.0
1 1
10 100

PHYSICAL REVIEW E 67, 021603 (2003

the roughness of the manifold will bgreater than it is in
steady state. The elasticity will diffusively smooth out this
roughness at longer times, leaving behind only the logarith-
mic roughness characteristic of the moving phase. This ex-
cess roughness near the crossover time from bubble nucle-
ation to steady-state motion is the cause of the peak in the
width w?(t) of the manifold shown in Fig. 8. Naively, we
expect the peakv?(t) to scale as system diameter but
subtleties associated with elastic slowing down of the veloc-
ity inside the bubble might need to be taken into account to
understand the process more fully.

For f®*=0.5, the forces at which the restarting occurs are
substantially abov§g and bubble growth appears to occur
with an expansion rate faM =0.6 of c~0.7, close to the
maximum possible rate of unity, while fov1=0.2, it is
somewhat slowerc~0.5. In the former case, the motion
inside of the bubble is essentially alternating sublattices, be-
havior characteristic of the plateau in the steady-state veloc-

ity at v ~1/2 that occurs with substantial overshoots; see Fig.
1(a). For the stronger randomnesf%}ale.o, the hysteresis
loops are narrower and the nucleation occurs to a lower ve-
locity state. ForM =0.2, the expansion rate is quite small,
c~0.13, but the flat constart regime in the figure is ob-
servable over a factor of 5 in time. For these parameters, at
early stages the evolution appears fractal, consistent with ex-
pectations. FoM =0.8f*=1.0, there is a much narrower
flat region and the evolution is not obviously bubblelike.
This can be seen in the snapshots of the local motion as the
bubble expands, shown in Fig. 27. At long times, all of the
samples show, as they must, approach of the spatially aver-
aged velocity to its steady-state value: this asymptotic behav-

state behavior(b) Log-log plot at early times. The solid line is the iOr is indicated in Fig. 28 by the solid line. We see that the

theoretical expectation in the fractal regime with a slope oftime at whichv(t) becomes close to is roughly that ex-
(d+¢)/2z—(3/2)~ —0.64.

tive avalanche occurs within an erratically growing region of
typical diameter/(t)~t with resulting cumulative mo-
ment of the avalancham(t)~/9"¢. This results in an ap-

c(t)~(

parent

t?y dt

1 dm 1/2

—t(d+ /22312 1

t0'64

pected for a bubble to encompass the whole system and run
into its periodic “images.”

More investigation of the dynamics of nucleation, in par-
ticular, of the transition from fractal on small scales to
bubblelike on larger, and the dependence of the crossover
scale on system size, dA—F., and on the other param-
eters, is clearly needed.

C. Nucleation avalanche statistics

See Fig. 28). When the size of the avalanche has reached Armed with the picture of avalanches in the hysteresis
&,(F), c(t) stops decreasing and the flattish parts of thdoops as fractal on scales of ordgy(F) and bubblelike on
curves at intermediate times are indicative of approximatelyarger scales, we can understand the key aspects of the ava-

uniform expansion; the inferred(t) in this regime is

lanche statistics in this regime. Avalanches that are triggered

roughly the expansion rate, of the bubble. If the expansion very close toF .—at forces within the distribution df} for
rate is small, as will occur if the steady-state velocity is low,that system size—will be fractal on all scales and very un-

then we expecc~¢,/7,~¢

1-z

, ~ with 7, the characteristic

likely to run away. We expect their statistics to be similar to

relaxation time in the moving phase; this is also of order thehose that occur in the regime nef when the force is
time at which the crossover from fractal to bubble growthincreased from an initially flat configuration: the probability

OocCcurs.

At long times, the whole system is moving armdt)
~L/+/7t as shown. This saturation occurstatL/c. Be-

of their area being larger thanwill decay only asa™“'? out
to the largest sizes. But as the force is increased, the small
rate of avalanche production means that there is still a sub-

cause the region near the origin of the bubble has alread§tantial probability that no system-sized avalanche will have
been moving for some time when the regions far away staroccurred until a force well outside the distributionff. In
moving, at the time when the furthest regions start movingthis regime, avalanches that do occur will still have a prob-
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ability of reaching area that decays aa“/® out to scales data would be highly misleading: in the limit of large sys-

of order¢, (F), but this is now considerably smaller than the tems, the distribution should scale like the critical dissipative

system size. Those that do reach areas of of@iemill tend limit over most of the range of avalanche sizes with the rapid
to run away and so the distribution of arepga,F)da, will decay observed in our data showing only for the largest few
be cut off at thisF-dependent crossover scale. The probabil-orders of magnitude of avalanche areas.

ity of runaway of an avalanche triggeredRis roughly the The dynamics of a typical runaway event will reflect this
probability that its area become larger tham (F)  crossover. Initially, it will start as a fractal avalanche similar
~&,(F)%: to those in the dissipative limit. But when—and if—an ava-

lanche reaches the crossover length of ordet, it will
a,(F) 1 cross over to bubblelike expansion with its interior behaving
Prun(F)%l_f p(a,F)da~ o (74 like the moving phase and its radius expanding linearly in
0 &(F) time at a rate that scales asL*¥)' 2. As the distribution

T _ l . . . _
wherep(a,F)da is the fraction of avalanches that occur nearmc Fchyst F_C !S brqad, however, there will t?e substantial run
F, which have areas withida of a. In order to obtain the to-run variations in both the crossover size and the rate of

cumulative distribution of avalanches in the hysteresis loof@rowth of the bubble.

we must multiply the distributiop(a,F) by the probability The behavior of the size dependence of the distribution of
that runaway has not yet occurred, widths of the hysteresis loops, as shown in Figgai, can
also be better understood in this framework. In small sys-

F tems, the force will typically have to be increased MyZ
Ppinnec(F,L)=eXI{ _jFlr(F/)LdPrun(F’)dF/> (79  from F. in order to trigger restarting. In contrast, in very

¢ large samples, we expect that the restarting will typically
occur at forced =(F.)+ gL~ that are abovéF.) by an
order of the width of the distribution d¥.. Yet, because of
the strong suppression of the densityF), of seeds for

and then integrate this ovér. If the rate of avalanche pro-
duction per unit area was of order unity, thBg,,eq would
be small forF—F.>L"Y" and the cumulative avalanche

distribution would be dominated by avalanches in the regim hueCIr?l?rg;%r:i(?;I ?;Stlgpdcﬁi ;)net\r;:r Sﬁg?pdeif;eigsﬁQﬂtfgr?%t}ce’
very nearfF | for which the distribution is characteristic of the 8 y arge.

critical point. The cumulative distribution of avalanche areaﬁ\/In the smallr limit is broad, and has a shape close to a

in the hvsteresis loon would then decav with the exponen eibull distribution with characteristic scale ri#” and
YS!t oop y _expon shape parameterd#, but we do not expect it to be exactly
k/d, consistent with what we observe for the dissipative

case. But withr (F) very small for strong pinning ant of this form. The reason is the breakdown of the argument

: given in Sec. V. In sufficiently small subregions of size
=0.8 orM =1.0—almost three orders of magnitude smaller d N . i )
than for the dissipative cadesee Fig. 260)]—P e Wil (L/b)® of a system of siz&.“, the possible nucleation pro

d d . | cesses ar@ot independent from one subregion to the next.
onl;ilk?decqrge small wheg, <rL%, correspondmgltdF—F.C This is because the diameter of a critical nucleation ava-
>r- "L, afactor of 50 or so further frorfrg than in - anche, when it crosses over to approximately deterministic
the dissipative case, roughly consistent with what is oby,pplelike growth, is of ordeg, (F) which is of the order of
served. a fixed—albeit r dependent—fraction of. at the typical

forces at which the first runaway avalanche occurs in a large
VIll. CROSSOVERS AND ASYMPTOPIA system. Thus the division into approximately independent
subregions will not work fob> 1/r .
Because the hysteresis loops vanish in the limit of large
The form of the avalanche distribution in hysteresis loopssystems, the total number of avalanches per unit area that
with a very low density of nucleation segments should bewill occur in a hysteresis loop decreases as a power of sys-
apparent from the discussion at the end of the precedingem size. This will also occur in the dissipative limit; how-
section. Most avalanches will take place wHeis close to  ever, in that case the “runaway” avalanches that occur for
the Flhysl at which the system restarts, thus it is the distribu-FwFé will not have all that much larger moment than ones
tion p(a,(thyg))da in this regime that will dominate the that only involve, say, half the system area. But due to the
cumulative statistics. This results in a distribution of ava-Strong suppression of avalanche productlon after a large
lanche areas that for small avalanches is critical with expo—event’ in the presence of substantial stress overshoots the

nent x/d, but for large avalanches decays with the Iargertotal number of avalanches will be further reduced in spite of

. a ) . the hysteresis loop becoming wider. The above analysis im-
cumulative exponeri{;,,=1. With smallr, as occurs in the : .

S o ' plies that the total number of avalanches per unit area that
strong pinning systems with! =0.8 andM = 1.0, the cross-

; . . occur in the hysteresis loop will be of order
over in a system of linear siZe occurs at a length scale of
order Lr® or corresponding crossover area of order. 1
For the size ranges investigated here—up_te128—this Nayar~ 1 Y47 —. (76)
means that, in practice, almost the full range of avalanche LY
areas will be in the large avalanche tail region with exponent
K.um=1. But extrapolating to very large systems from theseFurthermore, the runaway avalanche will typically run for a

A. Hysteresis loops
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very long way—probably exponentially far inrt~before large systems; the distributions of the critical forEg at
stopping at a displacemeht for which the total pinning is  which steady-state motion ceases, that at which it restarts

anomalously strong. when the force is increased from such a stopped SE%E%’

At this point, it is not clear whether the numerical data are, 1 that at which macroscopic motion commences when the

cpnsistent with this picture. _In particular, it appears that th(.?gorce is increased from a flat initial condition for the first
size dependence of the widths of the hysteresis loops i | i
>;me, Fcavau’ are all narrow and converge t.(M) in the

somewhat weaker than would be expected asymptotically’
Nevertheless, we believe that the deviation of the scaling olimit of large systems. Furthermore, the steady state velocity
the width of the hysteresis loops from the * scaling ex- 4 (F) is a unique function of the driving forde that vanishes
pected asymptotically is most likely associated with theas a universal power df —F,. Nevertheless, in principle,
crossover from the small system to large system behavior. Ifhere are static configurations that could be reached by care-
sufficiently large systems, we conjecture that ful enough control of the dynamics of all the system for all
_ forces up toF,,=F,(M=0)>F,M). But if the system
m=v 77 were to be started in such a configuration and the force in-
creased by an amount that is arbitrarily small in the limit of
B. Initial depinning a large system, an avalanche would be triggered that would

The complicated avalanche behavior observed when déun away and cause the whole system to start moving.
pinning is approached for the first time starting from almost  The universality class of the depinning transition forMll
flat initial conditions is probably due to a hybrid of effects. less than a multicritical valu®&l, appears to be that of the
For the strong pinning samples with substantial-sized overpurely dissipative limit without stress overshoots that has
shoots, in systems of size 128nough avalanches typically been analyzed by renormalization group methods previously.
occur before runaway that a strong suppression of the avarhis universality class is thus much broader than had been
lanche production rate occurs over the whole system. Thisonjectured.
suppression enables the force to be increased well past the The crucial feature of the dynamics on which this macro-
range in which runaway would occur in the dissipative limit, scopic uniqueness and universality relies is the existence of a
although not as far as it can for samples that have beenonzero density of nucleation sites for new avalanches after
stopped from the moving phase. The statistics of the avaan avalanche has run through a region. These must exist for
lanches in this regime will have a similar form to that of arbitrarily small increases of the applied force even if their
avalanches in the hysteresis loops discussed above, withdensityr is much lower than it would have been in the ab-
crossover from criticallike to cumulative-like at a length sence of stress overshoots. If these did not exist—more pre-
scale that depends on how stronglgF) has been sup- cisely, if there were a depletion layer of local forces after an
pressed. avalanche—then there would be macroscopic hysteresis with

For the weaker pinning samples, for example, wifff*  the force needing to be increased by the width of the deple-

=0.5 andM =0.6, the rate of avalanche production is nottion layer to restart the system once it has stopped after hav-
suppressed nearly as strongly and it is most likely that théng moved previously.
crossover regime is right in the middle of the range of In many physical contexts, the “one-way” motion we
sample sizes studied. have studied here is only a reasonable approximation if the
Further systematic tests to investigate this overall scenaritPrce is never reduced too far below the critical force. If the
would be very useful. In particular, one would like to under- manifold can move in either direction—as is the case of in-
stand on what aspects of the model, parameters, and histofgrfaces in, for example, magnets—decreasé- dfeyond
crucial quantities such as the suppression of avalanche pro=F¢ Will result in steady-state motion in the opposite direc-

duction rate after a large avalanche, depend. tion. If the force is decreased from aboke through zero
and — F. before increasing it back towards the positivg,
IX. DISCUSSION AND CONCLUSIONS the avalanche statistics and critical behavior will be more

like that of a system that has never been abByehan the
In this paper we have introduced and studied numerically;depinning after already having moved” that we have stud-
and by scaling analyses, a simple model of depinning transked here. The motion in the backward direction will wipe out
tions in which there are dynamic stress overshoots caused RQjje memory of the previous forward motion. If the system is

rapid motion of segments of the manifold. taken down close te- F so that large backwards avalanches
occur but macroscopic motion does not, then there may be
A. Macroscopic behavior interesting subtleties a§ is increased back up: some

We have produced a substantial amount of evidence thall“[lemory of the earlier forward motion might still exist.
the macroscopic behavior of this model with various kinds of
generic initial conditions isiot hysteretic for a wide range of
stress overshoots in spite of the coexistence over a range of In the remainder of this last section we summarize the
the driving force of static configurations and steady-statébehavior that occurs in our model for a rangevbin which
moving configurations. In particular, the critical foreg(M) there is a strongly suppressed density of nucleation seeds.
is uniquely defined and history independémtthe limit of  We also consider briefly under what circumstances similar

B. Finite-size effects
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behavior will be observed; and discuss some of the consesrderL (the cutoff being affected by the magnitude @j.
guences for a system in which understanding the finite-siz&here is no particular qualitative distinction between the
effects is crucial: earthquakes on a geological fault. character of “earthquakes” that have substantiakL and

In the dissipative limit of our model, all finite-size effects those with/~L.
in the vicinity of the depinning transition occur within a  With stress overshoots that give rise to a substantial re-
range of forces arounB, of width of order 1L, In con-  duction of the density of seeds for nucleating new events, the
trast, in the presence of stress overshoots finite-size effectehavior is quite different. As the pulling spring advances,
can be important over a much wider range of forces. Thesthere will be a string of avalanches until one runs away and
effects will be particularly pronounced if the suppression ofthe whole system moves. This motion will only stop when
nucleation seeds for further avalanches is very strong, i.e., the forceF(t) has decreased as a result of the motioﬁgo
after a system spanning avalanche the density of nucleatiamforce that will have variations of orderf/*. As the spring
segmentsy, is very small. slowly restretches, the pulling force will increase again and a

With r small, unless samples are sufficiently lard€,  series of quakes of various sizes will occur at a rate given by
>Z/(Mr), there will usually be no nucleation until the force rL%uy,. These events will not relieve much of the accumu-
has been increased by the magnitud.Z, of the over- lating stress and so the force will continue to increase until a
shoots. Unles$/ is very small, the nucleation will then be force F(T:h . at which a runaway event occurs. The typical

bubblelike with rapid motion in a linearly expanding bubble magnitude off. —F! and the width of its distribution are
occurring as soon as one segment is triggered. For larger hyst

S|

systems, the width of hysteresis loops will start to decreas80th of order (1 H4) (11L1"). The evolution of the runaway
and eventually, if the scenario presented above is correcgVent will at f!rst be fractalr bu.t then a crossover to bubble-
decrease as 177, but with a large coefficient that is a ran- like growth will occur and it will grow with a constant ex-
domly varying multiple of /¥4 Sites that are triggered as Pansion rate until the whole system is moving.
F is increased after the whole system has been stopped may The_|n|t|al slip velocity of the large earthquake will be of
result in finite avalanches with a distribution that crossespfdefv(FihySl), which will vary substantially, but have typi-
over from one power law to another as a function of theircal magnitude
size. Eventually, one of these avalanches will run away: ini-
tially it will grow in a fractal manner, but when its diameter _ 1 (80)
becomes of the order af/r', it will begin to expand in a UR (rUd ¢
more deterministic manner at an approximately constant rate
until it covers the whole system and the macroscopic motior\s it runs, the driving force will gradually decrease until it
restarts. In the limit of smal, this regime of bubble growth gets down to anotheF., at which point it will stop. The
will exist over a wide range of length scales. total displacement in such an event will be of ordehn

~L2(Flhyst— F.) and its moment hence of order

C. Model earthquake dynamics and statistics dig
L

The picture presented here for effects of stress overshoots mg~L9Ah~
on the dynamics of finite-size systems that occur as the driv-
ing force is varied have particularly interesting consequences. :
for models of earthquakes on disordered faults. The approtszlglger by ther.d?per.‘de”.t f_actor thf_m the _typ|cal largest
. - ; . events in the dissipative limifin obtaining this result, the
priate driving to model a geological fault is not a constantScalin law{ +1/v=2 was used
force, by rather driving by a weak spring. This is roughly 9 v )

; d o . The distribution of earthquake moments in this model will
equwaler_ﬂ for our case with short-rang_e elast|_c mteractlon%e a composite of charact((]—:-ristic earthquake and Gutenberg-
to replacing the applied force by a “pulling spring” with

Richter-like statistics[26,27]. Small events will have a

r 1dv (81)

G _ power-law distribution with exponent/ (d+ ) that will ob-
F(t)= F[Ust—h(t)], (78 tain out to moments of order
My~ (Lre)d+e, (82

whereG is an effective elastic constant of order unity, the

1/L.2 factor arises from th&? elasticity, and much smaller thamg for smallr, The distribution of larger

events will fall off more rapidly with exponemt/(d+ ¢) out
1 to events with moments of orden,~L9*¢. Events larger
h(t)=— >, h(xt) (790  than this will not occur unless they are runaway events. As
LY X these run for a considerably larg&h before stopping, there
will be a strong suppression of the distribution of moments
is the spatially averaged displacement. from my out to of ordermg, but the runaway events will
As has been discussed previoufRl, in the absence of have a nontrivial distribution.
stress overshoots a system driven with an infinitesimal This picture implies interesting anticorrelations between
“shearing” velocity v “self-organizes” into a statistically the occurrences of the largest of the intermediate size and the
steady state with a power-law distribution of avalanche divunaway events: the former are more likely to occur rela-
ameters that falls off as (4/) (d///’) out to length scales of tively soon after a runaway event rather than just before one
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because at later stages in the “earthquake cycle,” once abehind in inertial systems. We conjecture that this will be the
event gets to a small fraction of the system size, it will al-case if the inertia is not too large, as we found here for stress
most certainly run away. Some information on the statisticoovershoots, but this bears more careful thought.

of the largest events can also be inferred from the approxi- In the context of earthquakes, a more important issue is
mate Weibull form of the distribution oFlh " which will dynamic frictional weakening. An extreme form of frictional

y X ; : A

primarily determine the moments of the largest events. ~ Weakening was considered in R¢20]: if once a segment
In order to translate these results to models more apprdlas moved, it is always easier for it to move again at any
priate for geological faults, the elasticity needs to be longime in the same earthquake, this will certainly give rise to

ranged, with static stress transfer falling off as macroscopic hysteresis. As long as there is healing back up
to a higher strength between events, a system spanning event

will leave behind a configuration that cannot start moving
Ix—y|? again until the driving force has increased again by enough

to overcome the difference between the static and dynamic
in the two-dimensional case of interest for all but the biggesfriction. In reality, the history dependence of frictional forces
earthquakes. This modifies scaling laws & 1/v=1 and is complicated and some healing will occur already during an
k=d—1+¢. In the absence of long-range correlations in theevent on those segments that slow down or stop while other
random properties of the fault, in the dissipative limit the parts are still moving. But whether this, combined with dy-
predicted value of is zero, up to |ogarithms_ But with |0ng_ namic stress overshoots, will leave behind a finite density of
range correlated randomness it could be substantially largeRucleation sites for easily triggerable events is a difficult but

The consequences of the scenario suggested by our resuldportant question.

for geological fault dynamics certainly merit further investi- ~ Although this paper has perhaps raised as many questions
gation along these and other lines. But to conclude this pa@s it has answered, the progress it represents in understand-
per, we turn to another important issue: how much can bég of the dynamics of driven elastic manifolds in the pres-
carried over from the stress overshoot model to other typegnce of both randomness and nondissipative dynamics
of local dynamic effects? We should remark that this sceshould help frame and address some of the key questions that
nario is valid within the context of.= v for very large sys- remain.
tems.
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